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Preface 

This volume contains the lectures notes of the summerschooi on 

"Confined Photon Systems, Fundamentals and Applications" held at the 

"Institut d'Etudes Scientifiques" at Carg6se, Corsica, August 3-15, 1998. 

Confined photon systems such as microcavities and photonic crystals 

are being studied worldwide for many reasons : 

1. They lead to low-dimensional photonic systems, with single 

electromagnetic mode behaviour exhibiting outstanding properties such 

as field enhancement  and localization, ultra-high finesse 

electromagnetic modes, lossless resonators... 

2. They open the way to modified light-matter interaction such as the 

strong-coupling between atoms and cavities, or between excitons and 

photons in all-solid-state semiconductor microcavities. 

3. They are a main ground for the demonstration and use of many 

quantum optics phenomena such as single photon generation, squeezed 

light, low-power non-linear switching, quantum state entanglement, 

non-local quantum measurements,  and conceivably quantum 

computation. 

4. They are on the verge of yielding new, high-performance optical 

devices for large-scale industries such as telecommunications, lighting 

and displays.., based on novel concepts: high-efficiency microcavity 

LEDs, photonic crystal integrated systems. 



VI 

The need for a new school on these topics arose for various reasons : 

The many students entering the field need to be exposed to the main 

protagonists who constitute a very international and dispersed crowd due to 

the multidisciplinary aspects of the field. Also, in the past four years, we 

have witnessed many spectacular results which justify the hopes placed in 

the field, but also require wide, international dissemination. 

The school aimed at giving students a working knowledge of a new, 

burgeoning field with widescale applications in both fundamental and 

applied sciences. The format and schedule of the school were drafted with 

that in mind. The originality of this school was its multi-disciplinarity, 

extending to the emphasis put on the mixing of fundamental and applied 

knowledge, as the field is indeed one of the few where deep, fundamental 

insight can quickly lead to widescale applications in devices of unsurpassed 

performance. 

In the same manner as the school, these lecture notes are organized in 

a didactic way : We first have the four series of lectures on the basics of 

the field : properties of photon states by Fabre, electromagnetic properties 

of waveguides and structured media by Baets, properties of electronic states 

in matter by Koch, and introduction to photonic crystals by Joannopoulos. 

The main knowledge is then developed in the lectures by Savona on 

optical properties of  microcavities, Ho on the properties of  low- 

dimensional optical systems, Hood on cavity QED effects in atomic 

physics, and Imamoglu on quantum optics of semiconductor optoelectronic 

systems. 

This body of "tools" is put to use in the various specialized lectures : 

G6rard illustrates the properties of  cavity modes by their effect on 

spontaneous recombination rate (the Purcell effect); Rarity discusses the 

needs and approaches to single photon emitters ; Benisty describes the use 

of planar microcavities to yield high-efficiency LEDs;  Labilloy shows 

how to measure quantitatively 2D photonic crystals and how the measured 

parameters agree well with theory. 

The school, and this book, end with two papers that look towards the 

future, one on limitations to optical communications by Midwinter, the 

other, by DiVincenzo, on quantum computation. 
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B a s i c s  o f  Q u a n t u m  O p t i c s  a n d  C a v i t y  
Q u a n t u m  E l e c t r o d y n a m i c s  

Claude FABRE 

Laboratoire Kastler Brossel, Universit~ Pierre et Marie Curie 
Case 74, 75252 Paris cedex 05, France 

The purpose of these lectures is to provide a brief survey of the domain of 
quantum optics, which is the study of light, and of the interaction between 
light and matter, at a microscopic level of understanding. As such, it requires 
the use of quantum mechanics, which can be used to describe the matter 
itself, and also to describe the electromagnetic field. In principle, in order to 
get a perfect understanding of the phenomena, one needs to use the complete 
quantum theory of both matter, light and their relative interactions. But, as 
often in physics, less sophisticated and exhaustive approaches of the system 
under study can give a better physical insight and simpler calculations when 
some conditions are fulfilled. In some regions of the parameter space, a to~ 
tally classical, and apparently old-fashioned, approach can give an accurate 
description of reality, and a semiclassical (or semiquantum) approach in oth- 
ers (classical treatment of the field, quantum treatment of the matter). One 
of the aim of this overview is to precise the validity domains of these different 
possible approaches. More detailed descriptions of this domain of physics can 
be found in different textbooks [I, 2, 3, 4, 5, 6, 7, 8]. 

1 L i g h t  m a t t e r  i n t e r a c t i o n  : c l a s s i c a l  or  q u a n t u m  ? 

To simplify this presentation, we will restrict ourselves to the case of a mono- 
chromatic plane wave of frequency ~, having an electric field at the loca- 

tion rat of the atom given by E : E0~0 coswt, interacting with an atom 
with only two levels, labeled I and 2, and a corresponding Bohr Frequency 
a0 = (E2 - El)/]%. We assume a quasi-resonant interaction (a ~ ~0) de- 
scribed by the following electric-dipole term in the hamiltonian 

y~  : - E. D (1) 

where D is the atomic dipole. 

1.1 L o r e n t z  m ode l  

The first phenomenological microscopic description of matter-light interac- 
tion was given by Lorentz one century ago [9]. It assmnes that the atom is 
a classical dipole, in which the two opposite charges q and - q ,  of masses M 



and rn, are linked by an harmonic force, and oscillate freely with a frequency 
wo. When this classical atom is submitted to the electric field of the wave, the 

Newton equation for the electron motion implies that  D obeys the following 
equation (when M >> m) 

d2 ~ 2 -  ~ q2 
- = - w  0 D + - -E0~0 coswt (2) 

dt 2 m 

Let us write the time dependent dipole as the product  of a fast modulat ion 
e -i~t  and of a slow envelope/~ (t) 

D (t) = R e  (t)  e - ~ '  (3)  

Then, using the quasi-resonant approximation to neglect the term d2 f ) /d t  2, 
one obtains the following first-order evolution equation of the dipole envelope 

dD . q2 
d-T = i (w - w0) 5 + ~ - - ~ 0  E0 (4) 

This equation has a simple stationary solution (corresponding to the forced 
regime) q2 

b = 2 . ~ 0  (~ - ~0) s0  (5) 

Reminding that  the power P transferred from the atom to the field has the 
classical expression 

• - ~-E0 Im b (6) 

one sees that,  since in this model /9 is real, there is no power exchanged 
between the atom and the field : only dispersive effects (index changes) are 
described by equation (4). 

In order to account for power exchanges, one needs to introduce dissipative 
processes, such as collisions, or spontaneous emission. They will induce a 
decay of the atomic dipole, and a new term - 7 9  must be added in the dipole 
evolution equation (4). The new stationary value for the dipole is now 

~- q2 

2 ~ 0  [(~ - ~0) - i7] E0 (7) 

The imaginary part of D is now nonzero, but  always positive : the Lorentz 
model gives rise only to energy transfers from the field to the atom (absorp- 

tion process). Let us also notice that  D is strictly proportional to the applied 
field : there are no saturation effects. 

Despite its naivety (one knows that  the electron is not harmonically bound 
in the atom), this model gives astonishingly accurate and quantitatively exact 
predictions in the atom-matter  interaction in many situations, with only two 
adjustable parameters w0 and 7. We will see later the reason of this surprising 
S u c c e s s ,  
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Fig. 1. Evolution of the upper state population in the Einstein model 

1.2 E i n s t e i n  m o d e l  

Another kind of phenomenological approach of matter-wave interaction, based 
on Bohr's quantum theory, was introduced later by Einstein II0]. Let NI 
and N2 be the "populations" of the ground state I and of the excited state 
2 (i.e. the proportion of the atoms being in the corresponding state, with 
Nl + N2 ---- i) and u (w) the field energy density at frequency co (equal to 
1 2 ~c0E0). The evolution equation of the populations is in this model 

dN2 dN1 
- -  - -  A 2 1 N 2  + B (N1 - N2) u (a~0) (8) 

dt dt 

A21 accounts for spontaneous emission and is the analog of the ra te  7 intro- 
duced in the previous section. The second te rm corresponds to the well-known 
st imulated absorption and emission processes. The steady state for the upper  
state population is 

N2 = Bu (coo) (9) 
2 B u  (cOo) - A21 

One sees on equation (9) that  N2 is proport ional  the light power when 
B u  << A21. At high powers, N2 saturates  to the value 1/2, corresponding 
to a balance between st imulated emission and absorption processes. Figure 1 
gives the t ime dependence of N2 when the system starts  at t ime t -- 0 from 
the ground state  : the evolution towards the steady state is a monotonous 
exponential on a typical t ime A~-~. 

As one photon is emit ted for each transit ion 2 --~ 1, the power in the field 
exchanged in the process in given in this model by 

P = - r ~ o  tiN2 (10) 
dt 



It can be either positive or negative, depending on the respective contribu- 
tions of the stimulated emission and absorption processes. 

The Einstein model successfully explains light amplification effects and 
also saturation effects. It is for this reason widely used in laser theory. It 
accounts furthermore for the properties of radiation in equilibrium with a 
thermal bath  of atoms (Planck's law). But it says nothing about the phase of 
the electromagnetic .field when it interacts with matter ,  and on the evolution 
of the system when the field is not exactly resonant with the atoms (a; ~ a;0). 

1.3 Semic lass i ca l  (or  s e m i q u a n t u m )  m o d e l  : B l o c h - M a x w e l l  
e q u a t i o n s  

We now turn to an ab-initio model (in contrast to the two previous ones, 
which were phenomenological approaches), in which the atom is t rea ted  by 
quantum mechanics, and the field by the Maxwell equations. The hamiltonian 
ruling the atomic evolution is 

f t  = !2tato,~ - Eoco. D coswt (11) 

where D is the atom dipole quantum operator.  The equations of motion for 
the mean dipole and for the atomic populations can be derived by using the 
Ehrenfest theorem. They can be writ ten in terms of the dipole slowly varying 
envelope, defined in a way analogous to (3) 

A 

In the limit w ~ w0, one finds the following set of equations 

_ _  = q 2  

dZ) i (~ - ~o) ~) + i f - - E o  (N1 - N2) (13) 
dt mwo 

dN~ 
_ dN_~71 _ _ 

A 

where d = (11 D.e0 12) is the dipole matrix element and f = 2m~0d2/q2h 
is a dimensionless parameter called the oscillator strength of the transition. 
Equation (13) has a form very similar to (4) derived in the Lorentz model. 
It is strictly equivalent to (4) when the oscillator strength is I, and more 
importantly when N2 ~-. 0, and therefore N 1 ~ I. We thereby find the very 
important result that, within a numerical factor f, the Lorentz model is equiv- 
alent to the semi-classical approach .for a weakly excited atom. This occurs 
for example when it is excited by a weak field generated by a discharge lamp 
or a thermal field. 

The power exchanged P is given by -hwodN2/d t ,  like in the Einstein 
model, and hence using (14) 
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Fig. 2. Evolution of the upper state population (upper curve), and of the mean 
atomic dipole (lower curve) in the semiclassical model without relaxation 

P -  ~°E°Im[/~]2 (15) 

One retrieves an expression similar to the classical expression (6) of the 

Lorentz model. Figure 2 gives the time dependence of N2 and I m / 1 ~  for 
r ~ 

a n  
L 3 

atom initially in its ground state and for a field at exact resonance (w = w0)- 
One finds for the two quantities the well-known Rabi oscillations, with a 
period TRab~ = h/dEo. 

An important  feature of this model is the possibility of creating coherent 
superposition of atomic states. For example, if the resonant field is stopped 
abruptly at times T = TR/4 (" ~ pulse"), or T = 3TR/4, the a tom is respec- 
tively in the states 

I¢ (TR/4)) = (11) - i l2) ) /v~ ; t¢ (3TR)/4) = (11) + i l2} ) /v~  (16) 

These states are very different from classical statistical superpositions of the 
u~per and lower states with equal probabilities : they have a mean dipole 
D (depending on the relative phase of the complex coefficients of states III 
and ]2)) and are not stationary, whereas the classical superpositions have no 
dipole and are stationary. Coherent superposition of atomic states (which of 
course cannot be described in the Lorentz model) are quantum objects with 
many interesting applications. Let us mention the Ramsey fringes [11] and 
their use in metrology [12], the "black resonances" [13] and their application 
to laser cooling of atoms I141, and the existence of lasers without inversion 
[15]. 

Note that, in this model, the atomic system does not evolve to a stationary 
state. This comes from the fact that we have neglected dissipative phenomena, 



like in the first approach of the Lorentz model (Eq(4)). To take them into 
account, one needs to use a quantum description of the system in terms 
of density matrices, not of wavefunctions. Quantum theory of relaxation [6] 
implies the existence of two decay terms in the evolution equations of the 
mean values, which become 

• q2 

= [i - - 5 +  y -- o oEo (N1 IV2) (17) 
dt 

dt -- d~- = - ' h N 2  + EoIm /9 (18) 

These equations are the Bloch equations, which together with the Maxwell 
equations for the field, rule the system evolution within the semiclassical 
approach. The decay rates 3'1 and ~'2 depend on the exact relaxation processes 
present in the system. If spontaneous emission is the only dissipative process, 
then the dipole decay rate ~/2 is ½ of the population decay rate 3`1- If other 
relaxation processes take place, such as collisions, or lattice vibration, they 
randomize the phase and therefore destroy the dipole more quickly than they 
evacuate the energy out of the system, and often, in such non dilute systems, 
one has "/2 >> ")'1. 

Figure 3 gives the time dependence of N2 and Im ~D/ for three relative 
k ~ 

values of the decay constants. One firstly notes than a steady state is now 
reached, after a t ime of the order of 7~ -1 and that  the Rabi oscillation and the 
atomic dipole are quickly damped before reaching the stationary state. Fig 
3c) gives an evolution of N2 which is quite similar to the one obtained by the 
Einstein model. Indeed, if one adiabatically eliminates the quickly relaxing 
dipole (neglecting the d D  in equation (17)), one gets the following equations 
for the populations 

dN2 tiN1 72 d2E~ (?<t - N2) (19) 
dt -- d~- - 71N2 + 3`2 + (wo - w) 2 2/~2 

One retrieves the Einstein equation (8) with explicit values of the Einstein 
coefficients A and B. This equation is also valid in the case where w is not 
strictly equal to w0. We are then led to the conclusion that  the Einstein model 
correctly describes the matter-light interaction (within the semi-classical ap- 
proach) when the dipole decays very quickly (3'2 >> "h), which is the case 
when efficient non-radiative relaxation processes take place (or when the 
atom interacts with a light source with a broad spectrum, for which the 
dipole induced by the different frequency components  of the source interfere 
destructively). 

Note finally that  when relaxation is introduced, the system evolves to 
a stationary state where the mean dipole is zero, and the populations are 
nonzero : this state precisely corresponds to a statistical mixture of atoms in 
states 1 and 2 with probabilities N1 and N2. The  role of relaxation is thereby 
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to destroy the quantum coherences, i.e. the superpositions of atomic states 
like (16) created by the coherent interaction with the monochromat ic  field, 
and to t ransform the system into a classical statistical mixture. 

1.4 Ful l  q u a n t u m  m o d e l  

We now know that the Lorentz and Einstein approaches correspond to two 
special cases of the semi-classical model. The Maxwell-Bloch equations, de- 
rived in this model, are widely used in quantum optics and successfully ac- 
count for an impressive amount of phenomena. But they are necessarily an 
approximation, because the electromagnetic field is indeed a quantum object. 
Before going to the full quantum model of the whole matter+field system, we 
need to know more about the quantum description of the free electromagnetic 
field itself. This is what is done in the next section. 

2 Q u a n t u m  d e s c r i p t i o n  o f  l i g h t  

This section is devoted to a brief introduction to the quantum description of 
light. I ts  aim is to underline the main physical new features which appear  at 



this level of understanding, not to give a rigorous and comprehensive overview 
of the domain, which can be found in different textbooks [1]. 

2.1 M o d a l  d e c o m p o s i t i o n  of  t h e  c lass ical  e l e c t r o m a g n e t i c  f ield 
- - - 4  

Inside a volume V (that we will take cubic of side L ), any vector field E (r, t) 
can be expanded as a linear combination of modes ~ ( r )  

- - +  __.@ 

E (  ,t)  (20) 
g 

The summation extending only over discrete values of ~, because the vol- 
ume V in which the field is described is finite. The modes {L-~} form an 
orthonormal basis, that  is 

fv *(r) • ut, (r)d r = 6tt' ~ u-~*(r') - ~ ( r )  = 6(r - r ' )  (21) 

Different bases {~--~} can be chosen, according to the configuration under 
study. The simplest is the basis of plane waves 

u~( r ) = L -3/2~7e 'k~'~ e = {(n~,ny,n~) • Z 3 , m  = ±1} (22) 

where ~ is one of the two possible orthogonal polarization vectors (m = ±1) 
in the plane orthogonal to kt, and where k~ has components depending on 

= ~ n ~ ) .  relative integers n ~ , n y  and n~ (kx = ~-~nx, ky 2wnL Y' k~ = If one 
deals with laser beams, the basis of Gaussian modes [16] is more convenient. 
A basis made of stationary waves can also be useful when one uses real boxes 
with perfectly conducting walls to confine the field, for example in cavity 
quantum electrodynamics. 

2.2 Q u a n t u m  field o p e r a t o r s  

In the case of the electron, its quantum description is obtained by replacing 
in the different relevant physical quantities of the classical theory c-numbers 
by q-numbers, i.e. numbers by operators with well defined commutat ion re- 
lations. The procedure is the same for the electromagnetic field. All the field 
operators are functions of basic non-Hermitian operators 3~, named annihila- 
tion operators, defined for each mode g, which fulfill the following commutator 
algebra 

= = 0 ; = (23) 

Actually, all the quantum properties of light arise from the non-commutativity 
of 3~ and 3 + . The main observables of the quantum theory of light have then 
the following forms ~] in the SchrSdinger representation 

- Hamiltonian : H = ~  ~z~ (3+3~ + i )  where we = clkel 2 , 



- Field momentum : P = ~  hke a+ge 
g 

- Photon number in mode e : /~e = a~e-ae 
- Total photon number :/V = ~  /Ve 

g 

- Electric field: -E(r) = E (r) + 

7 (+) - Complex electric field: (r) = i ~ Ce~de u--~ (r), with Ce = (Noe/2eo)1/2 

In the case of the plane wave basis, one has in particular 

__~(+) 
E (r) = i E 8e eee~ker'de (24) 

g 

where £e = \/hwe/2eo'L g gives the order of magnitude of the electric field 
corresponding to one photon in the quantization box L a. 

It is often more convenient to work in the Heisenberg representation (time- 
dependent operators, time-independent field states). In the case of the free 
field (and only in this case), this amounts to replacing ag by "dee --i~t in all the 
previous expressions. It is then possible to write the time-dependent electric 
field operator as 

A A 

E (r, t) = i E ee (Epe cos ~be + Eqe sin Cg) (25) 
g 

where ~be is the usual propagation phase ~be = wet - ke.  r and 

Epe = ige{e(ae - a~ee) /~qe = Se(ae + a~-e) (26) 

are Hermitian operators called "quadrature operators", which do not com- 
mute 

This relation is somehow similar to the well-known relation [q, p] = ih valid 
for an electron of momentum p and position q. 

2.3 Q u a n t u m  field s t a t e s  

Starting from the commutation relations (23), one easily shows [17) that  the 
spectrum of operator -Ne is the set of non-negative integers ne = 0, 1, 2, .... 
Let us name Ine} the corresponding eigenvectors 

They correspond to a field containing exactly ne photons in mode g and in 
volume V, and are called number states, or Fock states. One shows that  the 
well-known relations of the harmonic oscillator hold also here 
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~e Ine> = ~ Ine - 1> ~e I0> = 0 ~ Ine> = ~ Ine + 1> (29) 

The eigenstates of ~r and P are t ensorp roduc t s  of states ]ne> for all the 
different modes : In1> ® In2) ® ... ® ]he) , that  we will write In1, n2, ..., he}. 
They form a basis of the total  Hilbert space of field states. Therefore, the 
most  general field state can be writ ten as 

I#?) = E E " "  E " "  C ~ i , n 2 , . . . ~ , . . .  I n l , n 2 ,  ...,ne, ...> (30) 
Ttl=O n2~O ~=0 

with the constraint (¢1 ~) = 1. The Hilbert  space spanned by vectors like 
(30) has a gigantic size, almost impossible to imagine : each number  ne runs 
from 0 to oo , and there is an infinity of modes e. As a result, the variety of 
field states is extraordinary, whereas the classical states of the field depend on 
a single set of complex numbers c~e, each one giving the complex ampli tude in 
one of the modes. One may encounter in quantum optics much more different 
situations than  in classical optics, as we will see. This immense world begins 
only to be explored. 

Among all the states, the state tnl = 0, n2 = 0, ..., ne = 0, ...} = Ivac> , 
called "vacuum",  plays a particular role, as it constitutes the ground s ta te  of 
the system. I t  could have been also called "darkness",  as it is a s ta te  from 
which no light energy can be extracted. We will see later that  it has strange 
and interesting properties. 

2.4 S ing le  m o d e  case  

To simphfy further, we will consider a single mode g, with a given polarization. 
We can then omit  the polarization vector, and work with a scalar field E( r ,  t). 

Classically speaking, the general form of a single mode field is 

E( r ,  t) = Eo cos(wet - ke . r + qo) = Epe cos Ce + Eq~ sin ¢e (31) 

I t  depends on two real quantities (Eo, ~) or (Epe = Eo cos ~, Eqe = Eo sin ~) 
and can be described by a point in a plane (the " 'Fresnel plane") of Cartesian 
coordinates (EpZ, Eql) o r  polar coordinates ( Eo, ~v) . 

In the quantum description, a single mode field is defined by a vector 
belonging to the subspace corresponding to this mode 

on (32) 
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M e a n  va lue s  I t  is easy to calculate the mean value of the electric field in 
such a state. One finds 

<¢1/~(r, t) 1¢) = Eo cos(wet - ke .  r + ~) (33) 

with Eo and ~ determined by the relation Eod ~" = 2ige {¢l ~e 1¢}- We see tha t  
expressions (33) and (31) coincide : there is no difference between classical 
and quantum behaviors as far as mean values are concerned. As we will 
see later, differences do exist, but only for higher order moments, i.e. for the 
.fluctuations around the classical mean values and for the correlations between 
different measurements.  

Q u a n t u m  field f l u c t u a t i o n s  The  electric field operator  restricted to mode 
e is 

t) = cos Ce + s in (34) 

with 
 qe] = 2i (35) 

E(r ,  t) coincides with the quadrature  operator  Epe when Cz = 0 (27c) and 
A 

with Eqe when Ce = ~ (2~r). As these two operators  do not commute,  they 
have no common eigenstates, and therefore it is not possible to find a s tate  
1¢> which would be an eigenstate of /~(r ,  t) for any value of ¢e = wet - ke. r, 
i.e. at  any point and at any time. In any s tate  I¢}, the electric field will not be 
perfectly defined, and will have therefore quantum fluctuations, or quantum 
noise, frorn one measurement  to another. In particular,  the variances of these 
fluctuations are constrained by the Heisenberg inequMity 

zSEpe AEqe > £~ (36) 

deduced from (27). In the Freshet plane, the point representing the mode 
is necessarily fuzzy. Relation (36) states tha t  the area  of uncertainty in the 
Fresnel plane has a lower bound. This is in part icular  true for the vacuum 
state,  for which one easily shows tha t  AEpe =- BEqe = £e. The vacuum state  
does not therefore correspond to perfect darkness : it has a field with a zero 
mean  value, but nonzero fluctuations, which are called "vacuum fluctuations". 

Relation (36) can be writ ten also in terms of phase and intensity noise. 
The rigorous definition of a phase operator  is a difficult task in quantum ~ t i c s  
[18]. However, for a state I~) corresponding to an "intense" field ((~1Ne I~) 

> >  1 ) , of zero mean classical phase { ( (¢1Eqe I¢} = 0 ), one can show tha t  

the phase fluctuations are proport ional  to the fluctuations of Eqe around 0 .  
Relation (36) then implies tha t  in this case 

1 (37) A ~ A H  > hwe or A~pANe> 
- -  2 

For intense fields, phase and energy ,  or phase and photon number,  are conju- 
gate quantities : the exact knowledge of one prevents the simultaneous exact 
knowledge of the other. 
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C o h e r e n t  s t a t e s  They are deflned aseigenstates of the annihilation oper- 
ator 3e 

a~l~> = ~la~)  (as) 

~e being any complex number. These states, introduced by SchrSdinger, have 
been extensively studied [19]. They are not eigenstates of the Hamiltonian, 
and have a Poissonian distribution over the different lne) states. One shows 
that  

= I el 2 = ! el = 

<Epe)=Re(2iCeae) (Epe) : Im(2 igec~e)  

AE~e = AEqe = B E ( r ,  t) = ge 
1 

A~ = 2 level if lael > >  1 

(39) 

The variance of field fluctuations in a coherent state, equal to ge, is indepen- 
dent of time and location of measurement and of the mean field amplitude 
and phase : it is equal to the vacuum fluctuations and corresponds to the 
minimum value in the Heisenberg inequality (36) : coherent states are mini- 
mum uncertainty states. In particular intense coherent states have quantum 
fluctuations which are much smaller than the mean value : they behave more 
and more classically as I~el grows. 

From an experimental point of view, it turns out that  single mode usual 
lasers welt above threshold produce light beams which can be described 
by such coherent states, and that  the other classical light sources (thermal 
sources, discharges,...) have more .fluctuations on any observable than coher- 
ent states 

(AEpe)¢l~s > ge (AEqe)cl~ > gg 

(zXN)d~ > ,/<Ne> ( z a ~ ) d ~ s  > - -  (40) 

One usually calls "standard quantum noise" the fluctuations of coherent 
states. They constitute the lower limit.for light.fluctuations of classical sources. 

There exist other light sources, producing "nonclassical states of light", 
which have fluctuations below the s tandard quantum noise given by (40). 
However, they cannot violate (36) and therefore must have AEpe > Ce if 

AEqe < ge, or A~ > 1/2 ( V / ~  if ( A N )  < x/(Ne; (sub-Poissmlian distri- 
bution). Generally speaking, they are more difficult to generate than the 
coherent states. Actually, most states described by (32) or even (35) have 
never been produced. 
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S q u e e z e d  s t a t e s  They are formally defined by the relation 

]ae, S) = s s(a~-~7~)/2 lae) (41) 

where S is real and l~e} a coherent state. One can show [20] that for these 
states 

(AE(r, t))2 : Ey (cos 2 ~)ee 2s + sin 2 ~ee-2S); 
AEpe = Sees; AEqe = E~e - s  (42) 

Squeezed states are still minimum uncertainty states with respect to (36), 
but, in contrast with coherent states, they have an unequal share of the 
fluctuations among the two quadratures. The field fluctuations are therefore 
smaller than the vacuum fluctuations at some points or at some times, if 
S > 0 when ~ - 0(7c) for example. The remaining quantum fluctuations 
can be as small as desired, provided one takes S large enough. But in such 
a case, the field fluctuations will be very large at the same time t a quarter 
wavelength further, or at the same point r, a quarter of a period later. A 
special interesting case is the "squeezed vacuum state" I c~e : 0, S} in which 
the mean electric field is 0, like in vacuum, but  with fluctuations below and 
above ge as a function of Ca- Another interesting squeezed state is the so- 
called " sub-Poissonian state", for which (Epe} > >  ge, (Eqe} = O, AEpe < 8e 

, and therefore, AEqe > Ee. In this state, one easily shows that  A N  < X / ~ - ~ ,  
which corresponds to a sub-Poissoi~ian distribution of photons. 

These states have been experimentally produced for the first t ime in 1985 
and have been the focus of a lot of theoretical and experimental at tention 
[21, 22]. They require some kind of optical nonlinearity to be produced : para- 
metric processes, frequency doubling, optical Kerr effect, phase conjugation 
have been successfully used to produce these states. Some lasers with reduced 
pumping noise have also been shown to generate sub-Poissonian states. To 
date, the lowest quantum noise variances experimentally observed are of the 

order of 20% of the vacuum level. 
One of the simplest phenomena in nonlinear optics is the parametric split- 

ting of light occuring in crystals with X(2) nonlinearity, sketched in figure 4 



14 

: a pump photon of frequency ~0 is split into a signal photon of frequency 
wl and an idler photon of frequency w2 (with w0 = ~I + w2 )- A possible 
system likely to produce squeezed states is the "degenerate parametric am- 
plifier", consisting of such a crystal, submitted to a beam of frequency aJ 0 
and producing signal and idler photons of frequency ~0/2. One can show [20] 
that if one injects a coherent field at frequency w0/2 at the entrance of the 
crystal, this process leads to a squeezed state at the output. In particular, 
if one injects "nothing", i.e. the vacuum state, one gets a squeezed vacuum. 
In this configuration, the squeezing parameter  S is significant only for very 
intense pumps (MW/cm 2 ), achievable only in the pulsed regime [22]. The 
squeezing effect can be enllanced if one inserts the crystal in a cavity reso- 
nant at frequency wo/2 , i.e. if one builds a set-up called "degenerate  optical 
parametric oscillator". In theory, S goes to infinity as one approaches from 
below the oscillation threshold of the parametric oscillator. In experiments,  
squeezed vacuum with a noise reduction of 80% have been obtained in this 
configuration with only 100 mW of c.w. pump power [22]. 

N u m b e r  s t a t e s  The energy eigenstates In~} are interesting because, as we 
will see later, they give rise to photodetection signals without any fluctua- 
tions. In such states, one easily shows that  

(he] E( r ,  t) ]ne) : 0 AE( r ,  t) : x/2ne + lee (43) 

The mean field is zero, like in vacuum or thermal fields ; however, the fluc- 
tuations around zero are very large when the number of photons ne is large. 
Since ANt  : 0 ,  then A~ : oo , according to (37) : number states correspond 
to a field with a perfectly defined amplitude E0 and a totally random phase 

Except in the trivial case n~ = 0, number states are highly nonclassical 
and very difficult to produce. To generate the one photon state In~ = 1), one 
technique is to take a single excited atom (or ion) in vacuum : If one waits a 
time long compared to the spontaneous emission lifetime, the a tom ends up 
in the ground state and the field in a one photon state in some spherical wave 
mode [6]. Another technique is to make use of the parametric splitt ing effect, 
already encountered to generate squeezing (figure 4). If the X (2) crystal is 
submitted to a pump wave of frequency w0 and wavevector k0, spontaneous 
parametric splitting takes place, creating a field state [~} of the form 

[¢}=Colvac}+ ~ Ckl,~l I1 :k1 ,~1;1  :k2,~2)  (44) 
kl ,~ l  

containing pairs of correlated photons of frequencies wl and w2 such that  ~1 + 
w2 = coo, and wavevectors kl and k2 such that  kl  + k2 = ko. One then takes 
a photodetector with a small aperture and a narrow frequency filter which 
can detect only light of frequency ~2 and wavevector k2. V~rhen this detector 
produces a nonzero signal, the state I¢ /pro jec t s  onto the corresponding state 
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11 : kl ,col ;1  : k2,w2) , and one is left with the one photon s ta te  I1 : k l , w l )  
which can be used in various experiments. This kind of technique is now 
currently used in many  quantum optics experiments a t  the photon counting 
regime and has led to the discovery of ve ry  interesting phenomena (quantum 
cryptography, quantum teleportation.. .)  [2]. 

Number  states Ine) with more than  one photon, and in part icular  with 
ne > >  1, have never been produced so far. Their  product ion would also lead 
to new kinds of quantum effects. 

O t h e r  n o n c l a s s i c a l  s t a t e s  Let us briefly mention another  class of nonclas- 
sical states, consisting in linear superposition of coherent states, such as 

IID1) = I0) + I b2> = + I-o ) (45) 

(within some normalization factor). When ]c~] 2 >> 1 , they are called "SchrSdinger 
cats", because they are quantum linear superpositions of two states of clas- 
sical character,  analogous to the superposit ion of a dead cat and a living cat 
considered by SchrSdinger. These states have been recently produced (with 

la] 2 ~ 10 ) and allowed studies of the decoherence t ime in a quantum mea- 
surement process [23]. 

2.5 T w o  m o d e  case  

The general state is in this case 

I%~} = E C ..... 2 Inl, n2} (46) 
n l ~o~ 2 

I t  can give rise to nonclassical fluctuations (below the s tandard  quantum 
limit) if one makes a measurement  on mode 1 or on mode 2, like in the 
single mode case. But  now, a new quantum feature arises when I@ cannot 
be wri t ten as a tensor product  of two states in modes 1 and 2 

(47) 

In this case, a measurement on mode 1 induces a state projection which 
changes also the result of later measurements on mode 2 : this shows that 
the two modes are correlated at the quantum level, in a way which in some 

cases cannot be accounted for by classical correlations, and gives rise for 

example to the violation of Bell inequalities [24]. 
A first technique to produce these states is to use spontaneous parametric 

down-conversion (eq.(44)), restricted to the case of two modes. One then 

produces the state 

]g,) = Co [0, O) + C1 I1, 1) (48) 
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This is obviously a non factorizable state (named a "twin photon state").  In 
real experiments, the parametric process has a low efficiency, so that  ]C1 ]2 < <  
]C012: the photon pairs are produced at a very low rate (typically 103 per 
second) and photon counting techniques are required. In a way similar to the 
generation of squeezed state in subsection (2.4), the process can be enhanced 
by inserting the crystal in a cavity resonant for modes 1 and 2 (nondegenerate 
optical parametric oscillator configuration). Above the oscillation threshold, 
the system generates the state 

[¢> = E  Cn [nl = n ,  n2 = n) (49) 
n 

with C~ ¢ 0 even for large values of n .  Th i s s t a t% called "twin beam" state, 
is non factorizable. It is an eigenstate of N1 - N2 with eigenvalue 0 : this 
means tha t  the photon number fluctuations are strictly the same in the two 
modes, and exactly cancel in the difference [25]. 

2.6 M o r e  t h a n  two  m o d e s  

Three-mode quantum correlations have been theoretically considered [26] and 
may have very interesting quantum properties . They have never been pro- 
duced in experiments so far, nor quantum states with more than three states. 
This shows that  the space of quantum light states is essentially unexplored, 
and that  much more work remains to be done in quantum optics to investigate 
it. 

3 Q u a n t u m  m e a s u r e m e n t s  o n  l i g h t  

In section 2, we have introduced different quantum operators for the elec- 
A 

tromagnetic field, such as the local instantaneous electric field E ( r , t), or 

the quadrature operators -Eve and Eqt. Even though they are called "observ- 
ables", these quantities seem to be very difficult to determine experimentally, 
because so far there are no photodetectors able to follow the very fast oscil- 
lation, at the femtosecond scale, of the optical electric field. This section is 
devoted to the study of measurement processes with actual photodetectors,  
and to the quantum effects which can be observed with these detectors. 

3.1 D i r e c t  p h o t o d e t e c t i o n  

In the optical range, photodetectors are either photomultipliers or photodi- 
odes. Both rely on a quantum process in which a bound electron is promoted 
to a continuum under the influence of the incoming light. The  free electron 
gives rise to a photocurrent which is measured and analyzed by electronic 
means. Glauber [27] made the quantum analysis of this process and found 
that  the mean photocurrent  is given by 
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(i(t)) =a / /  dx dy (E(+) (7,t)+ E(+) (-F,t)) (50) 

(s) 

where a is a constant depending on the detector, (x, y) the detector plane, 

(S) its area, and E(+) the complex electric field operator  introduced in (24). 
For a photodetector  of quantum efficiency t,  which totally absorbs the light 
and converts all of it into electrons (1 electron --* 1 photon), one can define 
a photocurrent  operator i" 

~.z = Bw---'-~2q¢°c//dx dyE (+) (-~, t) + E(+) (7,  t) (51) 

(s) 

which will enable us to determine photocurrent  mean values, but  also the 
quantum fluctuations around the mean. For as ingle  mode field/~(+) is pro- 
portional to ~ ,  so that  ~ is proportional to Ne = ~+3e : the photodetector  
is then a photon counter, or an energy-meter. The information lying in the 
phase of the field is completely lost in direct photodetection. 

Two qualitatively different regimes occur, according to the mean intensity 
of the measured light 

- The photon counting regime, when (Ne) ~ 1 : the photocurrent  appears 
as a series of isolated peaks, associated with the arrival of individual photons. 

- The analog regime, when (Nt) >> 1 : the different peaks overlap and 
give rise to a "macroscopic" photocurrent  with a nonzero mean, around which 
exist quantum fluctuations, which are still the consequence of the randomness 
of arrival times of the incoming photons. 

As we will see, quantum effects are not restricted to the photon counting 
regime. They are still present at the "macroscopic" level for light beams, 
where they can be observed on the photocurrent  fluctuations. 

If one assumes that  the different photons are statistically independent,  the 
distribution of photocurrent  peaks is Poissonian, and one gets fluctuations of 
photocounts  AN,  or a variance of the photocurrent  Ai, which is given by 

where B is the frequency bandwidth of the detection system. This noise, 
called "shot noise", has long been considered to be the lower limit in pho- 
todetect ion noise. 

N o i s e  s p e c t r a l  d e n s i t y  As seen in expression (52), the variance depends 
on B, i.e. on the detection properties.. A more intrinsic and detailed charac- 
terization of the photocurrent  fluctuations is its noise spectral density S~ ($2), 
defined as the Fourier transform of the current autocorrelation function 

(9 )  = (0) i - (i/2 ] (53) 
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S~ ($2) is also related to the Fourier components 5i (/2) of the photocurrent 
fluctuations 6i (t) -= i (t) - (i) measured by a system of frequency bandwidth 
B around/2  by 

2) = 2B (54) 

S~ (~)  is easily measurable by using a spectrum analyzer. 
Let us now assume that  the field arriving at the detector is in a coherent 

state. Using expression (53) and the properties of the coherent state, one 
easily shows that  

S~ (~) = q (i> (55) 

This rigorously shows that  in a coherent state one gets a shot noise limited 
photocurrent, and enforces the naive vision of a coherent state as a beam 
composed of randomly distributed photons. 

G e n e r a t i o n  of  s u b - P o i s s o n i a n  s t a t e s  As seen in subsection (2.2), there 
exist quantum states of light, called sub-Poissonian states, which have less 
fluctuations on Ne than the coherent state (and more on the phase). When 
these states impinge on a photodetector, they produce a photocurrent with 
sub-shot noise fluctuations, allowing direct optical measurements with better 
signal to noise ratios and better sensitivity than with classical light. 

In a laser, nothing determines the mean phase of the emitted field and 
sets it to a well defined value. As a result, the instantaneous phase evolves 
randomly under the influence of all the noise sources coupled to it, mainly 
spontaneous emission : this is the well-known SchawIow-Townes phase dif- 
fusion phenomenon, responsible for the ultimate laser linewidth/ 'l~,~r [28]. 
The phenomenon has another consequence : it produces an infinite phase 

--1 noise for measurement times long compared to/~l~,~r- According to eq. (37), 
nothing then prevents the intensity noise in a laser to be zero at the same 
time scale. Nothing thereby prevents a laser to generate a nonclassical state 
of light, in the form of a sub-Poissonian state. Actually, in real lasers [29], 
there are many noise sources which also act on the output intensity, and hide 
the intrinsic sub-Poissonian effect, mainly the almost inevitable noise present 
in the pumping process of the gain medium. 

Yamaznoto [30] has shown that  in semiconductor lasers, the pump noise is 
nothing else than the injection current noise, equal to 2kBT/R, where R is the 
equivalent resistance of the injection circuit (power supply + diode effective 
resistance). By increasing R, one can reduce this noise at will. One is then 
left with the other sources of noise, coming either from spontaneous emission 
(negligible well above threshold) or from the existence of other laser modes 
close to the oscillation threshold. Experiments have been performed, which 
produce sub-Poissonian fight with rather simple set-ups. The noise reduction 
below shot noise lies in the 80 % range for cooled samples [31] or 30 % range 
for room temperature devices [32]. 
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Fig. 5. Sketch of beam coupling on a beamsplitter 

These sub-Poissonian sources have been used to enhance the sensitivity 
of optical experiments, for example to measure very weak spectroscopic sig- 
nals, which would have been unobservable by using classical light sources of 
identical intensity [33]. 

3.2 Q u a n t u m  t h e o r y  of  t h e  l inear  op t ica l  coupler 

To go further in this discussion, we need to analyze in quantum words a 
familiar object in optics : the linear coupler, such as a beamsp[itter or a 
polarizing beamsplitter (see figure 5). It is a system which couples in a linear 
way light modes of different directions or different polarizations. Classical 
optics shows that  the output complex amplitudes defined at point A are 
related to the input ones (defined at the same point) by the relations 

{E~ = t E~ ~ + r E~ ~ 
E~ = -r E~ ~ + t EF (5~) 

where r and t are the real reflection and transmission coefficients of the device 
(r 2 + t 2 = 1). The minus sign in the second equation ensures the equality 
between the total  input light power (P~" + P ~ )  and the total output  power. 
(Pf~' + P~').  

One can show that  the same relation holds for the quantum operators/~(+) 
introduced in (2.2). In the particular case of single mode fields, it reduces to 
the simple relation {~ = t a~ ~ + ~ ar 

~d~ ut = - r  ~ n  + t ~2 n (57) 

between the annihilation operators of the two modes coupled by the device. It 
is easy to show that  the quantum input-output relation (57) is canonical, i.e. 
preserves the commutation relations (23) and (27). We will often use relation 
(57) in the subsequent subsections. 
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2 

i . = i l -  i 2 

Fig. 6. Homodyne detection scheme 

3.3 H o m o d y n e  d e t e c t i o n  

Let us consider the homodyne detection set-up sketched in figure 6 : a 
coherent state la = I~1 e i~') in mode 2 (named local oscillator) is mixed on  

a 50 % beamsplitter (r = t = l /v/2) with an unknown single mode field 
state tk~} in mode 1. Both modes have the same frequency and transverse 
variation. The two resulting beams are measured by two photodetectors with 
unity quantum efficiency. One then records the difference i_ = i l  - i 2  between 
the two photocurrents, proportional to the difference N_ = N1 - N2 between 
the photon numbers in the two modes after the beamsplitter. Formulae (57) 
imply that  the corresponding operator/V_ is given in terms of the operators 
before the beamsplitter by 

N_ ~- ~1a~2 -~- a~11~2 (58) 

The mean value of/V_ is then 

<IV_) = Ic~l (~181 e -i~ +~1 + e is° t~} (59) 

This quantity is proportional to ( E p l ) w h e n  ~o = 0 a n d  to ( / ~ q l ) w h e n  
k / \ / 

~o = ~. One can also show that  the noise on i_ is proportional to the quan- 
tum fluctuations of the operators Epl and Eql in the case of a strong local 

oscillator (i.e. when I~1 >> (~1 E I~) ). 
This shows that  the quadrature components/~pe and ~2qe of the electric 

field are really measurable quantities, even with detectors that  are unable to 
measure instantaneous values of the optical field. The technique used, con- 
sisting in mixing the signal to measure with another signal of same frequency 
and variable phase, is similar to stroboscopy, or to holography. 
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[ laser  I j - ~  doubler [ 2c° .... J -] oPo 

homodyne detection 

Fig. 7. Set-up for the generation and detection of squeezed vacuum 

I t  is therefore possible to measure the noise spectral  densities of the two 
quadrature  operators  SG, (f2) and SE,, (f2). One shows [34] tha t  the commu- 
tat ion relation (27) implies tha t  

vn sz,, (n) sz, (n) >~ (r~o/2~o cA) ~ (60) 

where A is the transverse area of the mode. This relation generalizes the 
Heisenberg inequality (36). In contrast to (36), containing the unphysica] 
quantization volume V in Ce, relation (60) contains only measurable quanti- 
ties. It also concerns all the noise frequencies ~2. 

If 1~} is a coherent state, one easily shows tha t  

sz,, (n)  = s~,, (n)  = r~o/2co ~A (61) 

Like for the variances, a coherent s tate  is a minimum state  with respect to 
inequality (60), and has equal noises densities on the two quadratures. Eq 
(61) states also that this noise, also called "standard quantum noise", is the 
same for all noise Fourier frequencies [2 : it is a "white noise". In a way 
similar to subsection (2.4), we will then define a nonclassical state of light as 
a state for which, for example SG, (f2) is smaller than the standard quantum 
limit within some interval [~21, ~22] of the Fourier spectrum. 

Figure 7 shows the complete (but simplified) set-up of an experiment 
in which a squeezed vacumn state is produced and measured [35]. It con- 
sists in a laser source at frequency w~ which is frequency doubled in a first 
nonlinear device. The resulting light at frequency 2w pumps a sub-threshold 
degenerate OPO, and produces squeezed vacumn at frequency w (see section 
2.4). To measure it, one uses the homodyne detection scheme of the previous 
subsection with a local oscillator coining from the initial laser. When one 
records the noise on i_ on a spectrum analyzer as a function of the local 
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oscillator phase (which can be changed by varying the corresponding optical 
path), one observes a phase-dependent noise, alternatively above and below 
the standard quantum noise level (measured by switching off the beam com- 
ing from the OPO in the homodyne detector). In the experiment described 
here [35], the squeezed quadrature had a noise reduced by 70 To below the 
standard quantum noise level. 

Such a squeezed vacuum beam can be used to improve the sensitivity in 
interferometric measurements, as theoretically shown by [36]. The technique 
consists in mixing the squeezed vacuum generated by the OPO with the in- 
put laser light (like in figure 7) on the beamsphtter used in the Michelson 
interferometer : the interference fringes recorded when the optical path is 
varied will have less noise around some values of this path (at mid-fringe), 
and in this configuration the signal to noise ratio is shown to be enhanced by 
the squeezing factor. This scheme has been successfully implemented experi- 
mentally [37]; it has important potential applications in the measurement of 
gravitational waves by interferometers with arm lengths of several kilometers, 
which are looking for ultra-weak interferometric signals very close to, or even 
below, the shot noise "limit". 

3.4 C o i n c i d e n c e  d e t e c t i o n  

Let us now turn to another kind of detection on hght, which is almost always 
performed in the photon counting regime : it makes use of two photodetec- 
tors i and 2 of areas $1 and $2 around points 71 and -~2 and a delay line 
introducing a delay ~- on the photocurrent coming from detector 2. The coin- 
cidence signal Gl2 (~-) is the product of the two photocurrents : it is nonzero 
only when a photon arrives at some time t on detector 1, and another photon 
at the time t + T on detector 2 (coincidence count). Glauber has shown that  
the count rate of such double counts is proportional to 

$I $2 
(62) 

If a single mode, labeled 1, is detected on $1, and another single mode, 
labeled 2, on $2, the complex field operators are simply proportional to the 
corresponding annihilation operators, and one has 

(63) 

In order to get rid of the unknown proportionality constants it is useful to 
&ivide G12 by the single photodetection count rates measured on each de- 
tector N1 and ?72 to obtain the normalized second order correlation function 
g(2) (~) 

G12 0") 
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Fig. 8. Set-up for the measurement of the second-order correlation function 

(7) 

(64) 
This quantity has a classical analog, defined for classical stochastic fields, 
which is obtained simply by replacing quantum means by ensemble means in 
expressions (63,64). Using the Cauchy-Schwartz inequality, one shows that  
for classical correlation functions 

N1N2 or g(2) (7) >/1 W (65) c la s s i ca l  

Using the quantum definition of g(2) (T), it is easy to show that,  if ]~P) is 
in a coherent state, and therefore is an eigenstate of 8 (+) (t), then g(2) (Q = 
1 for any value of T. The value 1, frontier between the classical and pure 
quantum properties in this peculiar measurement device, is reached when one 
uses a coherent state. We will call it, as previously, the standard quantum 
limit in this kind of measurement. 

P h o t o n  b u n c h i n g  Let us now consider the set-up of figure 8, which uses 
a beamsplitter with equal transmission and reflections (r --- t = 1 / ~  in 
equations (56) and (57)). This configusation was introduced in the late 50's 
by Hanbury-Brown and Twiss in radio-astronomy, to characterize various 
kinds of electromagnetic waves. Using expression (63) for G12 and relation 
(57) for the quantum transformation of operators on the beamsplitter, it is 
straightforward to calculate the result of coincidence measurement after the 
beamsplitter. 

Let us firstly take the case of two coherent states Io~) and la2) arriving on 
both sides of the beamsplitter (the configuration of a single nonzero coherent 
state on side (1) and nothing on side (2) is included in this case, as nothing 
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is the vacuum state, which is a special case of coherent state a2 = 0). The  
operator mean values must then be taken in state Ic~1/® ]a2/- One finds in 
this case 

G12(7) =N1N2 ; g (2)(z) = 1  (66) 

One still gets the standard quantum limit, which can be simply under- 
stood when one knows the following result, specific of coherent states : if 
one sends two uncorrelated coherent states lal) ® I~2) at the input of a 
beamsplitter, one gets at its output the quantum state ]0~ ut = tal + ra2) ~ 
la~ ut -~ -ral + ta2) made of two other coherent states, but still uncorrelated. 
If one sends a classical field on the beamsplitter (and nothing on the other 
input), one will find in general 

g(2) (67) cz,~s~¢,~z (0) > 1 

(g(2) (0) ---- 2 in particular for a thermal field). This phenomenon, called 
"photon-bunching", shows that photons arrive preferably by pairs in clas- 
sical sources, and has been extensively studied in the 60's [I, 2]. 

P h o t o n  a n t i b u n c h i n g  The quantum region (0 < g(2) (~-) < 1) corresponds 
to a phenomenon of "photon antibunching" (photons arrive more likely iso- 
lated), specific of nonclassical fields. If one sends for example on one side 
of the beamsplitter a single photon number state In1 = 1) (and the vacuum 
on the other side), the full quantum calculation gives straightforwardly the 
following result 

1 1 
Yl : ~ N2 = ~ G12 (2) : 0 ~ g(2) : 0 (68) 

This result of measurement cannot be obtained by classical fluctuating fields, 
but it can be simply explained in terms of photons behaving as classical 
particles : the photon is a particle which cannot be split by the beamsplitter,  
which then randomly transmits it or reflects it with equal probabilities. This 
implies that  N1 = N2 = 1/2. But the single particle cannot be detected 
twice at two different locations or times, and therefore U12 = 0. One finds 
here a perfect example of wave-particle duality for the light : the result of 
a coincidence measurement for a single photon state cannot be explained by 
classical waves, even with stochastic fluctuations, but  can be perfectly well 
understood in the language of classical particles. 

As already explained in subsection (2.4), a single atom in an excited state  
is a perfect source of a single photon state. Actually the first experiment able 
to put in evidence a nonclassical effect on light [38] has been the measurement 
of a g(2) (0) value smaller than I in the resonance fluorescence of single atoms. 
The experimental value was g(2) (0) -= 0.6 in this celebrated "premiere" per- 
formed in 1977. More refined experiments performed later [39, 40], for ex- 
ample with single ions trapped in electromagnetic traps, yielded the value 
0 for g(2) (0), and an impressive agreement between the experiment and the 
predictions of quantum theory. 



25 

Case  of  t w i n  p h o t o n s  Let us now replace at the input of the beamsplitter 
tensor products of uncorrelated states, even nonclassical, by correlated two- 
mode states. We have shown in subsection (2.5) that  it was possible to produce 
the following twin photon state by spontaneous parametric down conversion 

Ig ~) = cl 10,0)+ c2 Ii,1) (69) 

The quantum calculation of photodetection signals with such a state is still 
straightforward. One finds 

N I = I  N 2 = l  and G 1 2 = 0  (70) 

The value I for N1 and N2 comes from the fact that  two photons are 
present in the set-up on the average, and that  they are equally distributed on 
the two output ports of the beamsplitter. But the value 0 for G12 is difficult to 
understand, precisely because there are now 2 photons present in the system, 
which do not a priori rule out the possibility of a simultaneous double count. 

Let us suppose for a while that  photons are classical particles. Then there 
is a probability 1/4 of the two photons being measured both in output  port 
1, 1/4 of the two photons being both in output  port 2 and 1/2 of finding 
one photon in port 1 and one in port 2. "Particle mechanics" gives therefore 
the value 0, 5 for 9 (2) (0) in this case, which lies outside the classical wave 
domain, but does not correspond to the exact quantum calculation. 

One is therefore ted to the following important statement : light, as it is 
described by the full quantum theory, sometimes looks like a classical wave 
(actually most of the time), sometimes looks like a classical particle, the 
photon, and sometimes (hopefully seldom) looks like nothing classical. There 
is in the quantum aspects of light more than the famous wave-particle duality 
(which should be called "classical wave-classical particle duality), and some 
phenomena in optics look really "strange" as compared to the classical world 
of waves and particles. 

Actually a simple quantum "explanation" of the fact that  g12 (0) = 0 in 
this experiment can be given. The double count situation comes from two 
different events : (photon (1) transmitted + photon (2) transmitted) and 
(photon (1) reflected + photon (2) reflected), having equal classical probabil- 
ities 1/4. As these two "paths" cannot be distinguished by any experiment, 
we must add the probability amplitudes and square the result to get the right 
quantum mechanical probability of the event. The probability amplitudes of 
reflection and transmission are equal r and t [1]. Because of the change of sign 
for r in the two possible reflections (eqs(56)), dae probability amplitudes for 

the two paths are respectively @2× "~2 and ( - ~ 2 ) -  - ,  ._j(-~) '  the sum of which 

is 0. The zero value of G12 comes thereby from a destructive interference 
between probability amplitudes, a well known feature in quantum mechanics. 

The first experiment check of this phenomenon has been performed by 
Mandel and coworkers in 87 [41] using parametric downconversion in a KDP 
crystal. In order to get the perfect probability amplitude cancelation giving 
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rise to G12 = 0, the paths taken by the twin-photons from their "birth" in the 
cristal to the beamsplitter must be strictly equal. When this configuration 
is experimentally realized, one gets an almost perfect cancelation of the co- 
incidence rate. This set-up has been refined and complicated in more recent 
experiments, in order to test other puzzling predictions of quantum optics 
[2, 4]. 

4 I n t e r a c t i o n  b e t w e e n  m a t t e r  a n d  q u a n t i z e d  l i g h t  

We can now finally turn our attention to the problem of the full quantum 
description of light-matter interaction. In order to reduce the problem to its 
essence, and also to be able to compare the exact theory with the approximate 
treatments given in section 1, we will make the same simplifying assumptions, 
namely that  the matter is made of a two level atom, of Bohr frequency w0, and 
that  the field is in a single mode of frequency w, which is almost resonant 
with the atom (w ~ w0). This can be in particular obtained if the field is 
confined inside a real resonant cavity of frequency w, so that  one often labels 
"cavity quantum electrodynamics" the physics described in this section. 

4.1 J a y n e s - C u r n m i n g s  m o d e l  

The Hilbert space in which the atom-field system is now described is the 
tensor product of the atomic Hilbert space, spanned by vectors that  we will 
call here Ig) (for the ground state), and le) (for the excited state), and of the 
field Hilbert space, spanned in the single mode case by the mtmber states 
In). The general quantum state is then 

o o  

= Z cjn IJ) ® Ln) = Z IJ, n) (71) 
j=e ,g  n=O j , n  

Generally speaking, this state cannot be factorized into an atomic component 
and a field component : when matter  and light interact, quantum correlations 
do appear between them and it is not possible to speak rigorously in terms 
of a field and of an atom with independent properties, even long after the 
interaction between them has ended. C. Cohen-Tannoudji [6] has introduced 
for this kind of state (71) the terminology of "dressed atom" (atom dressed 
by the surrounding photons). But it could as well have been named "dressed 
field" (field dressed by the existing atoms). 

The hamil tonian/~  describing the evolution of this "dressed system" is 
the sum of three terms 

= + + H,,- (72) 

At the dipole approximation, and treating the center of mass r~t of the atom 
as a classical variable, one has 
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~a, = r~o le> <el 

= (~al ,  . D  

(73) 

in which the origin of energies has been chosen to the energy of the atomic 

ground state Ig) in presence of the vacuum field state In = 0), and D is the 
dipole atomic operator,  defined like in subsection 1.3, and writ ten here as 

A 

= d '  (19> (el + I~> <91) (74) 

A 

D has no diagonal elements, proportional to ]e} (e I or {g> (gl, because of the 
pari ty conservation symmetry of atoms. The  interaction h~miltonian can be 
also writ ten as 

~tin, = ~hOo (Ie) {91 + I9> <el) ( '~-  ~) 

assuming the atom to be at position rat---* = 0 , and setting 

s?0 = Ee d • ~ / h  

(75) 

(76) 

The  coupling constant ~0 is often writ ten g, especially in solid state physics. 
Let  us note first that  H is a t ime independent hamiltonian, which was not 
the case for the semiclassical hamiltonian (eq.( l l )) .  This means that ,  if one 

considers the interaction term Hi,~t as a small perturbat ion compared to the 
first two terms, ~ri~t will induce transitions between levels ]j, n} that  have the 

same energy. For example, ~r~t connects states ]g, n) to states ]e, n + 1) and 
describes the excitation of the atom with a change of the number of photons 
by 1 (and the reverse process). But the transition will be efficient only in 
the resonant case, i.e. between states t9,n} and l e , n -  1} when w = w0. 
Conversely, the states le, n) and ]g,n + 1) will be also resonantly coupled. 
In the resonant or quasi-resonant configuration, we can therefore restrict 
ourselves to the approximate interaction term 

H~int = ihF2o ([e) (gl 3 - [g) (el a - '+)  (77) 

which describes only the resonant (or quasi-resonant) part  of the processes. 
The new total  hamiltonian 

= Hat + H~,e~d + H:n~ n [~0 I~/<~1 + ~ a + a  + ~n0 (le/OI ~ - t91 tel a+)] 
(78) 

has been first introduced by Jaynes and Cummings [43] and has been exten- 
sively studied as the prototype of l ight-matter interaction at the quantum 
level. It  is a good approximation of the physical reality in two limiting con- 
figurations : 
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- a two-level atom confined in an electromagnetic cavity with perfectly 
reflecting boundaries having a resonant frequency close to the atomic Bohr 
frequency. 

- a two-level atom submitted in free space to a strong single mode quasi 
resonant laser beam : the coupling between the atom and the mode "filled" 
by the laser light overwhelms the coupling to all the other modes, provided 
that  all effects related to spontaneous emission of the atom are neglected. 

In both cases, the finite quality factor of the cavity, or the existence of 
atomic spontaneous emission, will introduce a dissipative term, and therefore 
will lead to a physical behaviour of the system departing from the exact 
Jaynes-Cummings model. We will consider these modifications in subsection 
4.4. 

4.2 Energ ies  and e igenvec to r s  o f  t h e  a t o m - f i e l d  s y s t e m  

~1 has eigenstates and eigenvectors which can be easily determined because 
H'  is a tensor product of 2 x 2 matrices in subspaces {Ig, n ) ,  le, n - 1)}, plus 
a pure diagonal term in the 1-D subspace corresponding to vector Ig, 0). One 
finds for the energies 

E 0 = 0  " E + ~ = h  r u z - ~ ±  J2~+52 n > 0  (79) 
' 2 

and for the eigenvectors 

I~o) = Ig, O) 
1~7+n} = i cos 0~ lg, n) + sin On I e, n - 1) (80) 

= -isme  Ig, ) + le, n - 1) 

w h i c h  t a n  2 e .  = - 

Let us now focus our discussion on the exact resonance conf igurat ion 
(w = wo : ~ = ~),  for which the quantum effects are maxin~zed. In  absence 
of the coupling term (i.e. when the atoms axe far from the electromagnetic 
field mode), the two states Ig ,n}  and le, n -  1 / have the same energy. The 
effect of the coupling is to remove this degeneracy and to give rise to new 
eigenstates : ~ (±i Ig, n) + le, n - 1}) separated by an energy difference equal 

to hJ20v~. These states which are not factorizable ("entangled") axe precisely 
the dressed atom states. They will allow us to determine the time evolution 
of the atom+field system for any initial configuration. 

4 . 3  T i m e  e v o l u t i o n  ( r e s o n a n t  c a s e  w = w0) 

Let us first assume that  the atom has been prepared in the excited state, and 
that  the field mode is empty. The initial state of the system I~ (0)) = le, 0} 
is not an eigenstate of ~r, and changes with time. One easily finds 
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I ]k~ (t)/ = e -i~°t ]e, o2 cos - - ~  + Ig, 1) sin (81) 

and The probability to find the atom in the excited state is N~ = cos 2 2 , 
therefore has an oscillatory behaviour. This situation is very different to what  
is encountered for the same excited atom in vacuum le,0), but  in the free 
space, with an infinity of field modes with which the atom is coupled : one 
finds in this case the usual exponential decay N~ -= e - r t  characteristic of 
spontaneous emission : the presence of cavity walls thereby strongly affects 
the phenomenon of spontaneous emission. 

Let us now take the system in t he  state [~P (0)) -- ]g, n0), i.e. the ground 
state  a tom in presence of a highly non classical field, described by a number 
state. One finds that  in this case, the system state becomes later 

I~P (t)} = e -~'~°"~°t tg, no} cos #2ov/'~2 - ]e, no - 1} sin #20x/~o~ (82) 

Now Ng is equal to cos 2 ~0v / '~} ,  and one finds again tha t  the atomic pop- 
ulation is submitted to a periodic oscillation : it is the "quantum P~abi oscil- 
lation", reminiscent of the Rabi oscillation found in the semi-classical model 
(subsection 1.3). But  the system behaves in a much different way from what 
is predicted in the semi-classical theory. Let us take for example a "~  pulse" 
like in subsection (1.3). At the end of the pulse, the system is in the following 
quantum state (within a global phase factor) 

1 
= (Ig, n 0 / - l e ,  n0 - 1)) (83)  

which has nothing to do with the coherent superposition of atomic states 
found in eq (16) : one can show that  the mean dipole and mean field is zero 
in this state. In adition, there are strong correlations between the atomic 
and field part  : if one is able to measure the atomic state and find, say, lg), 
one knows that  the field is precisely in the number state In0). This quantum 
correlation between the atomic and field parts is perfect even though the 
interaction has ended, because for example the atom has moved outside the 
field mode. In the semi-classical theory, the field is imposed from the outside 
and does not change when it interacts with the atom. This highly nonclassical 
si tuation is difficult to achieve experimentally for no >/2. 

Let us now consider a physical situation which is much simpler to realize 
experimentally : the atom is initially in state Ig), and the field in a coherent 

~ e -1~1',/2 One finds in this case state Is) = ~  c~ In), with c~ = ~ 

(8a) 
So tha t  the atomic ground state populat ion is now 
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Fig. 9. Time evolution of the atomic upper state population for a two-level atom 
interacting with a coherent state (~ = 4) 
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r~w~O 

Ng (t) is a mixing of quantum Rabi oscillations with different frequencies and 
different weights. Figure 9 gives the t ime variation of the atomic population in 
the case a = 4. One observes tha t  the Rabi oscillations are quickly damped,  
and then reappear for a while after a delay. The damping is due to the non 
monochromatic character of the Rabi oscillations, the "revival" is a quantum 
effect due to the finite number of sinusoidal oscillations contributing to Ng, 
which interfere again constructively when the different oscillations are agin 
in phase. 

One therefore sees that  when the atom interacts with a coherent state of 
weak intensity ([a[ ~ 1), specific quantum features on the atomic variables 
appear which are not accounted for by the semiclassicai model. The same is 
t rue for the field, which has Mso a nonclassical character, especially during 
the time when Ng ~ 0.5, when the field is found to be somehow similar to a 
Schrhdinger cat state (as defined in subsection 2.4). This kind of evolution has 
been experimentally observed for Rydberg atoms in interaction with cavity 
modes in the microwave domain [47]. 

The situation is drastically simplified in the case of an intense coherent 
field [[a] e i~) with [a[ >> 1. One easily shows then that,  neglecting terms of 
the order T~I' the system state factorizes into a field part  and an atomic par t  
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QUANTUM ELECTRODYNAMICS 

matter + any f ield state (even non-classical) 

calculation of fluctuations and correlations 

calculation of mean values in the general case 
r ~ ~% 

SEMI-CLASSICAL APPROACH 
MAXWELL-BLOCH EQUATIONS 

. ~  intense coherent states 

calculation of mean values only 
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Fig. 10. Validity domains of the different approaches used in quantum optics 

= 1~2~Ot_e_~ot+,~le}sin~l~2~ot (86) (t)> jg} cos 
which has three physical implications : 

(i) there is a "disentanglement" between the two parts, and therefore there 
are no longer correlations between the atomic and field measurements ; 

(ii) the field part evolves like a free coherent state, unaffected by the 
interaction with the a tom ; 

(iii) the atomic par t  evolves in a semi-classical way : one exactly finds at  
this limit an atomic evolution ruled by the semiclassica] equations (13) and 
(14). 

We have thus been able to bridge the gap between the exact quan tum 
evolution and the semi-classical one, which is found to be only valid when the 
sys tem interacts with strong coherent beams. This is fortunately the case in a 
vast  major i ty  of experimental  situations. Figure 10 gives in a schematic way 
the validity domains of the different approximations tha t  we have discussed 
in these lectures. 

4.4 I n f l u e n c e  o f  r e l a x a t i o n  

In realistic experimental  situations, cavity walls are not perfectly reflecting, 
and atomic excited levels are not stable. The  previously calculated t ime evo- 
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lution of the system is then only valid for times short compared to the atomic 
lifetime and to the cavity decay time. Dissipation has actually not only dele- 
terious effects on the system : it couples it to the outside world, and allows us 
to have informations about the intracavity system, by the way of atomic flu- 
orescence or field transmission through the cavity limits. To take relaxation 
into account, one must describe the system by a density matr ix  for the total  
atom-field ~system. Its evolution is ruled by the master equation 

d 1 p]+7 (2a_ a+ _ a+a_p_ (2a a+ a+ap_  a+a) 

(87) 
where the first term describes the energy conserving evolution under the in- 
fluence of the Jaynes-Cummings hamiltonian (eq (77)), the second the atomic 
decay (7 : dipole decay constant, ~+ = Ig} (el, ~ -  = I e} (g[), and the third 
the field decay (~ : intracavity electric field decay rate). This complicated 
equation has no simple solution, except in some limiting cases, that  we will 
now examine. 

4.5 L o w  e x c i t a t i o n  l imi t  : w e a k  a n d  s t r o n g  c o u p l i n g  cases  

In this case, one can assume that  the system evolves only in the "low energy 
subspace", spanned by vectors {[g, 0}, It, 0>, Ig, 1> }. Then, from (87), one can 
deduce the following simple equations for the mean values of a (proportional 
to the complex electric field) and ~_ (proportional to the atomic dipole) [44] 

(a> = (ico0 - ~) (a> + 00  (a_> (88) 
a Ca-> = (~co0 - 7)  Ca-> - o 0  Ca) 

These equations are identical to the evolution equations of two damped clas- 
sical oscillators with the same oscillation frequency co0, which are linearly 
coupled to each other. As is well-known, they lead to the onset of new un- 
coupled normal modes of the system, evolving hke e ~t .  Two different regimes 
can be found : 

(i) the weak-coupling regime, when f20 ~< f2c~,t~z = In - 7 i /2 ,  for which 
the system still oscillates at frequency w0, but with different decay rates 

e ~ - o 8  (89) 

(ii) the strong-coupling regime, when ~0 >/ Y2cru~c~z, for which the system 
is damped with a fixed average rate (n + 7 ) / 2 ,  but  now with two different 
oscillation .frequencies 

I 

Re ~ = w0 + Y2R with ;2R = f20~/1 (~ - 7)2 (90) 
4$202 v 
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This removal of degeneracy appears for example in the form of a periodic 
exchange of oscillatory energy between the dipole and the electric field at 
f requency/JR i.e. of a Rabi oscillation. 

Note here that  these conclusions are changed if more than one atom in- 
teract  with the cavity mode. In this case, one must replace ~± by a collective 

A 

dipole operator ~ -- ~ (~+)~. One can show that  this leads to a change 
i : a t o m s  

of the Rabi oscillation frequency ~20, which must be replaced by ~20 w / ~ t ,  
where N~t is a mean number of interacting atoms, defined by 

i 

where ue ( 7 )  is the modal amplitude of the intracavity field defined in eq(20). 
The bifurcation point between the weak and strong coupling regimes is then 
equal to 

2v j 
This qualitative change in the system behaviour when one crosses ~20 = 

~ 2 ~ i  can be seen either on the spectrum of the light t ransmit ted through 
the atom-cavity system, or on the spectrum of the fluorescence light emit ted 
by the atom when it is in its excited state. In both  configurations, one ob- 
serves a single peak with a variable width when ~20 < ~ 2 ~ a l  (this width 
tending to ~ for the cavity spectrum, to ~/for the fluorescence spectrum when 
I20 -~ 0), and two peaks with the same width and a splitting varying with 
~20and N~t (but not with the probe field intensity) when ~20 > ~ 2 ~ i ~ l .  This 
features have been experimentally observed by Kimble and coworkers for Ce- 
sium atoms traversing a high finesse optical cavity tuned on the resonance 
line of the Cesium atom [45]. They observed in particular the variation of the 
normal mode splitting with the mean number of interacting atoms on the 
transmission spectrum of the Fabry Perot  cavity. 

4.6 B a d  c a v i t y  l imi t  

Let us now consider the case when the cavity decay time is much shorter 
than the atomic decay time and than the Rabi period Y2o I. The cavity mode 
can no longer be considered as a single mode field, but rather a continuum 
of modes with a width ~ to which the two level atom is coupled. In this case, 
the Fermi's golden rule apply in order to calculate the transition probability, 
but with a density of states p (E) = I//%~ (one mode in a energ-y band width 
of h~). One therefore gets a modification of the atomic spontaneous emission 
rate, which becomes 

"/c~v = "Y (1 + Co) where Co = (93) 
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Co is usually called the "single atom cooperativity parameter",  and can be 
much larger than 1 when ~0 >> % In this case, using expression (76) of 
~0 and the detailed expressions of n and % one finds for Co an expression 
independent of the dipole coupling d (present in ~2o 2 and ~), which represents a 
purely geometry enhancement factor of the spontaneous emission rate, known 
as the Purcell factor 

3 _ A 3 (94) 
w v  7 ¢2 V 

This factor is significant when the cavity quality factor Q is large, or when 
the cavity volume V is comparable to .k 3. 

This cavity-induced enhancement of the spontaneous emission rate has 
been observed in various experiments : 

(i) using microwave fields (for which ,k is large) firstly, interacting with 
highly excited atomic states (l~ydberg states), which have very large di- 
pole moments because of their large dimensions. In [47] Na Rydberg states 
In = 23, S) were inserted in a resonant cavity (v~¢s ~ IOOGHZ) of Q = 105. 
An enhancement of spontaneous emission by a factor 500 was observed. 

(ii) using optical fields and high finesse Fabry-Perot  cavities (tmled to 
the resonance line of the atom). In [48], Rb atoms (A -- 0.56 pm) crossed a 
Fabry-Perot  of finesse F = 500. A decrease by 20 % of the atomic lifetime 
was observed. 

For the sake of briefness, we have restricted the present analysis to the 
quasi-resonant case. It can be shown also that  far from resonance, a high Q 
cavity changes also the spontaneous emission : it enhances the lifetime by 
a large factor, because in some way, the accessible density of states p (E) 
for the spontaneous emission light is now much smaller in detuned cavities 
than  in free space. In this configuration, one must be careful to "forbid" to 
spontaneous photons all light modes of the free space and to use a closed 
cavity, or at least a large aperture cavity. One will find in [49, 50] a review 
of this subject and a description of the different experiments which have 
successfully confirmed this effect. 

4.7 G e n e r a t i o n  o f  nonc las s i ca l  s t a t e s  o f  l igh t  in c a v i t y  q u a n t u m  
e l e c t r o d y n a m i c s  

We have seen so far that the atom-field coupling leads to strong changes of 
the atomic dynamics. As we will see now, it also strongly affects the field, 
and permits the degeneration of nonclassical states in the cavity mode. 

A n t i b u n c h i n g  In the low excitation limit, the intracavity field projects es- 
sentially on states tn --- 0) and In = 1). As such, it exhibits an antibunching 
character, which is observable by the method explained in subsection 2.4 on 
the weak probe field t ransmit ted through the system. Furthermore, in the 
strong coupling regime, the normal mode splitting manifests itself as oscilla- 
tions in the correlation function g(2) around 1. This feature has been observed 
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by [46] in the case of small numbers of atoms (Nat ~ 20) interacting with 
the cavity mode, where a non-classical value of g(2) (0) of 0.8 was measured 
in the experiment. 

Squeez ing  When one increases the input probe field, it is possible to observe 
on the transmit ted light intensity as a function of input hght intensity a 
hysteresis loop : one reaches a bistabihty region, well known for nonlinear 
systems inserted in the feedback loop consisting of the cavity. This occurs 
when the eooperativity parameter C = )VatC0 is large enough, which can 
be reached either by increasing the cavity finesse, or the number interacting 
atoms. The last solution is generally easier : even with cavities of moderate 
finesse (F  ~ 50), the bistability region is reached with less than a m W  of 
input light if the number of atoms is of the order of 106. 

These conditions have been achieved in [51] using a magneto-optical trap 
to confine Cs atoms inside the mode of a Fabry-Perot cavity. It is then pos- 
sible to find detuning parameters between the cavity mode, the probe field 
and the atoms, for which squeezing can be observed on the probe beam re- 
flected by the cavity. In [51] a quadrature squeezing of 40 % was observed. 
Other squeezing experiments using atomic beams instead of trapped atoms, 
travelling in the cavity mode, have generated squeezed states by using the 
atom + cavity mode system [52, 53]. 

5 C o n c l u s i o n  

This very rapid overview of quantum electrodynamics in the optical range 
has allowed us to give a first insight concerning some basic physical phe- 
nomena of the domain, and to precise the validity conditions of the different 
approximations. It has also missed many others, which could not fit within 
such a short series of lectures. Let us mention briefly some of them : 

- the non resonant atom-cavity interaction, leading to electromagnetic 
field phaseshifts dependent on the atomic state, or to atomic coherence phase 

factors dependent on the field state. 

- the tailoring of atom-field quantum correlations, leading to quantum non 
demolition measurement of field observables and to the very active domain 

of "quantum computing". 

- the radiative forces due to the atom-field coupling, which have also a 
nonclassical character (Casimir force between mirrors, trapping force due to 

the vacumn field, ...). 

- the micromaser, in which excited single atoms are continously sent in 

the cavity mode. 

All these fascinating subjects (and some others) are presented in the ref- 

erences [4, 6, 49, 50, 44]. 
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Abstract 

This chapter discusses, in a tutorial way, the basic theory of electromagnehc 
emission by a dipole in a planar cavity, which is representative for the 
spontaneous emission in micro-cavity LED's. We start from the expansion of a 
point source field into plane waves. Then the enhancement and inhibition effects 
of a cavity upon plane wave components are introduced Next, the vectorial 
aspects af dealing with a dipole field are discussed, as welt as the effects caused 
by the use of realistic mirrors. Finally we describe the effect of the cavity upon the 
carrier lifetime and give a discussion of guided modes. More in particular the 
plane wave decomposition and normal mode decomposition are confronted with 
each other. 

1. Introduction 
Light emitting diodes (LED's) are among the most widely used semiconductor 
optoelectronic components and the worldwide production volume of these devices 
is huge. Their applications are wide ranging, from simple indicator lamps to 
optical communication sources, from lamps for lighting to elements for large 
colour displays. When compared to incandescent lamps, they are very compact 
and reliable and offer a relatively high efficiency, brighmess and modulation 
bandwidth. On most aspects they are outperformed by semiconductor laser diodes, 
but they are simpler to make and hence cost less. In many volume applications the 
incoherence of LED's, both temporally and spatially, is more of an advantage than 
a disadvantage. This is certainly true in applications where the human eye is 
exposed to the light beam, in terms of safety as well as in terms of the 
inconvenience of speckle typical for coherent light. 
In view of their commercial importance, LED's have obviously been optimised 
thoroughly. Nevertheless, improvements of the various performance aspects of 
LED's would still be very welcome. One such aspect is efficiency. Although the 
internal power conversion efficiency of LED's - the ratio of internally produced 
light power to electrical drive power - can approach 100% in high quality 
semiconductor diodes, the external power efficiency - being the internal efficiency 
multiplied with the light extraction efficiency from the semiconductor into air - is 
rather poor. The high refractive index of the light generating semiconductor layer 
is responsible for this. This can be understood from fig. 1, where a simple 
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situation with an isotropic point source near a plane semiconductor-air interface is 
considered. 

', 

\ i /  air 

T.I.R, ~ n 

Fig. 1." Refract ion o r r i s  f r o m  a poin t  source at a semiconductor-air  interface, 
showing  the extraction cone. 

The point source emits rays - or plane waves - with uniform power density in all 
directions. Of all rays only those with an angle 0 (with respect to the normal to the 
interface) smaller than the critical angle for total internal reflection 0~ can escape 
from the semiconductor into air, whereby O~ is given by 

1 
sin 0 c = - (1) 

n 

with n the refractive index of the semiconductor. 
The solid angle .(2 of the cone corresponding to those escaping rays is given by: 

if2 = 2n( l  - cos 0 ~ ) 

~- r t s i n  2 0 c for 0 c small (2) 

n 2 

Even if the rays in this cone could fully escape (which is not the case due to 
partial reflection at the interface), the extraction efficiency would still be limited 
to 

1 (3) 
"qextraction <- 4n  2 

For a typical semiconductor like GaAs, with n ~ 3,6, this means that 0~ ~ 18 ° and 
qextraction --< 2%. If the simple semiconductor-air structure is replaced by a planar 
multilayer structure, with a semiconductor half-space holding the point source at 
one side, the situation remains more or less the same. An anti-reflection coating 
for example can help to boost the transmission for normal incidence to 100%, but 
cannot have any impact on the extraction cone. 

An obvious way to circumvent the problem of this low extraction efficiency is to 
put the point source at the centre of a semiconductor ball with a spherical 
semiconductor-air interface. In that case the entire spherical wave from the point 
source hits the interface in normal direction. A simple anti-reflective coating then 
allows to have an extraction efficiency of 100%. Unfortunately, the fabrication of 
such a semiconductor ball would be very difficult. Several less ideal but more 
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practical approaches have been adopted to improve the extraction efficiency. The 
most obvious approach is to embed the semiconductor chip in a transparent plastic 
with a dome shape. Since the refractive index of the plastic is higher than that of 
air, the extraction cone in the semiconductor is larger and hence is the extraction 
efficiency. The plastic is dome-shaped so that the rays in the plastic hit the plastic- 
air interface at close-to-normal angles, allowing for easy extraction. Actually, the 
dome shape is often made such that the rays are more or less collimated upon 
refraction at the plastic-air interface. 
A second approach is to make use of LED-chips with a semiconductor substrate 
that is transparent to the generated light. Light is extracted from all six sides of the 
chip. The extracted light is then collected and to a certain degree collimated by 
curved mirrors, possibly in combination with a lens. Extraction is further 
improved by roughening the semiconductor surfaces. This provides a 
randomisation of the rays such that every ray has - after a multiplicity of 
reflections within the chip - a finite probability of hitting a surface under escape 
conditions. The transparent substrate approach has led to devices with ex'ternal 
quantum efficiencies in the range of 20 to 40%. While these efficiency levels are 
quite respectable, the brightness suffers from this approach. Brightness - or 
radiance - (of a more or less directional light beam) is defmed as the ratio of the 
(wavelength integrated) beam power to the product of its effective emission area 
and the solid angle of its radiation pattern. Since in the transparent substrate 
approach, light leaves the chip from all sides with a more or less Lambertian 
radiation profile the brightness cannot be very high..This basically means that it is 
difficult to focus this light beam to a small spot or to couple it into an optical 
system with limited aperture or numerical aperture. The transparent substrate 
approach is also unsuitable for army devices. 

To obtain a high brightness/high efficiency LED there are basically two 
approaches, both of which are based on local enhancement of the extraction 
efficiency, so that they are suitable for LED-arrays. In the first approach the LED 
active layer is embedded between a specular mirror and a roughened mirror, 
separated by no more than a few micrometers. This leads again to a randomisation 
mechanism as in the transparent substrate device, but now in a very localised way. 
This approach has led to very high efficiencies [Schnitzer, 1993], [Wmdisch, 
1998], but it requires substrate removal and a non-trivial roughening technology. 
The second - and technologically more mature - approach is the micro-cavity 
(MC-LED) or resonant cavity (RC-LED) approach. In these devices the active 
layer is embedded in a small cavity with dimensions of the order of the 
wavelength of the emitted light. Under those circumstances the spontaneous 
emission process itseff is modified, such that the emission is no longer isotropic. 
By a proper design the emission pattern can be tailored to enlarge the extraction 
efficiency, which leads to an improved overall efficiency. This can basically be 
understood as an interference effect. Consider a point source between two mirrors, 
as shown in fig. 2. The point source emits waves in all directions. For certain 
directions, as is the case in fig. 2a, the contributions to the total output wave from 
consecutive reflections in the cavity happen to be in phase. This means that the 
total radiated power is strong in that direction, which also means that the point 
source emits a lot of power in that direction. For certain other directions the 



41 

opposite happens (fig. 2b): the various contributions to the total beam interfere 
destructively leading to a small beam power. This implies that the source emits 
little power in that direction. 

lstrong 

(a) 

,7 weak 

/ /._77... 

Co) 

Fig. 2: Figure showing how the cavity can lead to enhancement (a) or 
inhibition of emission (b). 

In other words, the cavity induces a non-isotropic radiation pattern even ff the 
point source is intrinsically isotropic. The basic design principle of an MC-LED is 
to enhance emission in directions or - more generally speaking into 
electromagnetic modes that can be extracted from the cavity and to inhibit those 
directions or modes that cannot be extracted. The micro-cavity effect can not only 
be used to boost the efficiency of LED's but also to narrow the emission pattern 
and the emission spectrum, but a combination of all of these is difficult to achieve. 
It is worth noting that interference effects do not only influence the radiation 
pattern in a two-mirror cavity, but also in the case of a single mirror configuration, 
The enhancement and inhibition effects are however less pronounced. 
The effect of mirrors and cavities on spontaneous emission has been known since 
many years [Purcell, 1946] 
The theory of dipole emission in layered structures has been rigorously described 
by Lukosz et al [Lukosz, 1977a, 1977b, 1979, 1980]. The experimental interest in 
micro-cavity LED's has risen considerably since the early nineties and results 
have been reported on MC-LED's in a variety of material systems and for a 
variety of wavelengths (for a review, see [De Neve, 1997] and [Blondelle, 19971). 
The design issues in these devices have also been elaborated in detail lBenisty, 
1998, a,b and c]. 
The vast majority of these results is based on planar (or one-dimensional) MC- 
LED's, in which the device structure is basically a planar layered structure (apart 
from a provision to con/me current injection to a finite area). It is generally 
believed that three-dimensional cavities (with wavelength scale dimensions in all 
directions) would perform much better in a number of ways, but such structures 
are difficult to make (and also difficult to model) and reports are still scarce. 
The problem of spontaneous emission in a cavity can in the so-called weak- 
coupling regime be described accurately as an electromagnetic problem with a 
dipole of given dipole strength radiating in the cavity. In te next section a strongly 
related but simpler problem will be analysed first, i.e. the problem of an isotropic 
point source radiating in a cavity whereby a scalar wave equation is assumed. 
Following that the consequences of working with dipole sources and vectorial 
wave equations will be derived. Next the various kinds of mirrors that can be used 
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in a planar microcavity LED will be described, followed by a discussion of dipole 
emission ;, a planar cavity. The last paragraph discusses some aspects of guided 
modes. 

2. Expansion of a point source into plane waves 
Consider a wave function ~u(x, .v, z, t) that satisfies a scalar wave equation in 
uniform space with refractive index n: 

n2 c321V(x'Y'z't) = sources (4) 
V21F(x'Y'Z't) c2 Ot 2 

with c being the speed of light. This equation can be seen as an approximation of 
Maxwell's equations whereby the field quantity ¢/ represents any of the 
components of either electric or magnetic field. In a uniform medium this 
equation is actually correct for any of the 6 field components. Assuming operation 
at a single (circular) frequency co the field ~u(x, y, z, 0 can be described through its 
complex phasor el(x, y, z) 

qJ(x, y ,z , t )= Re[qJ(x, y,z)exp(+ jo~t)] (5) 

whereby for simplicity the same notation ~, is used for both the field and its 
phasor representation. The phasor then satisfies the time independent wave 
equation: 

: ' (6) V-Ilt(x, y , z  ) - ko n~ C/(x, y , z  ) = sources 

co 2a- 
whereby k 0 - - and 2 is the (vacuum) wavelength. 

c 3, 
In general two types of sources need to be considered in the right hand side of (6). 
First there are sources that are independent of the field W at the location of the 
source. An example is spontaneous emission in a semiconductor. Secondly there 
are sources that are induced by the local field, often in a linear way. Examples are 
absorption of light (an "annihilation source" providing attenuation) and stimulated 
emission of light (a "generation source" providing amplification). In as far that the 
induced sources are proportional to the field, they can be combined with the term 
ko:n: ~ in the left hand of equation (6), whereby the refractive index n needs to be 
replaced by a new complex refractive index n = nr + jni with n, representing loss 
or gain. With the convention of equation (5), loss and gain are represented by a 
negative and positive value of n, respectively. 
We now consider the generic case of a (field-independent) point source: 

sources=d(x ,y , z )  (7) 

The field solution for this point source problem is given by: 

qjs(x,y,z)= 1 exp(- jkonr ) withr  =~/x 2 +y2 +z  2 (8) 
47t r 

The question now considered is whether the point source field can be decomposed 
into plane waves ~'k of the form: 
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vk  = A exp(- /k.,-) (9) 

whereby [kl = nko so as to satisfy the sourceless wave equation. The k-vector is 
normal to the phasefront and its direction is that of the energy flow. Plane waves 
form a set of orthogonal eigenfunctions of a uniform sourceless medium. 
In order to derive this expansion the two-dimensional Fourier transform of 

~/dx, y, z) is taken with respect to x andy: 

+ o o  +o{3 

w~(kx,ky,z): I I q+a(x'y'z)exp(+j(k:x+kyy)~dy (10) 
- o O  -<:10 

~'a(kx, k~, Z) denotes the Fourier transform of g/,gx, y, z), as is clear from the 
arguments of the function. The spatial frequencies k~ and ky are real and have a 
range from -m to +m. The inverse Fourier transform is: 

+ o o + o 0  

I ~_S z)exp(-j(kxx+kyy))dkxdky (11) T_ 

This equation can be written as: 

4 - o 0 + c 0  

l I I g/a(kx'ky'z)exp(+ Jkzz)exg- j(kxx+kyy+kzz)~k:dkY 
(2,0= _:_= 

: o 
with k:=+~/n2ka-k~-ky 

,,hereby =k: 
(12) 

This expression clearly has the meaning of a plane wave expansion. The term 
exp(-j(k,;c + kyy + k..z)) is a plane wave with k-vector (k, k~ kJ. It is important to 
realise however that the expansion contams two kinds of plane waves. For 

kl~ <n2kd (13) 

the resulting k: is real and we deal with a normal propagative plane wave. For 

kf > n2kd (14) 

the resulting k~ is imaginary (at least for lossless media with real refractive index) 
and the corresponding plane waves are called evanescent plane waves. The term 
"wave" is actually not very appropriate for these contributions, since they do not 

The conventional definition of Fourier transform uses a minus-sign m front of 
the argumentj(k;c+kxV ) for the forward transform and a plus-sign for the inverse 
transform. Here we use the opposite convention so that a spatial frequency 
component with positive k~ and ky corresponds to a plane wave travelling in the 
positive x- and y-direction. This choice is related to the (arbitrary) sign choice of 
the argument +jcot in equation 5. 
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propagate. They are necessary however for a complete description of the field 
near the point source where the field amplitude varies very rapidly. The 
evanescent waves are high spatial frequency functions (in the x- and y-direction) 
capable of describing these rapid variations. Away from the point source the 
evanescent waves decay and they do not contribute to the far field at a large 
distance from the source, at least not in a uniform medium. In a layered medium it 
is possible that an evanescent wave generated by the dipole is transformed into a 
propagative wave upon incidence on a layer with high refractive index. In this 
case the dipole does radiate power, tunneled via the evanescent mode, into the 
propagative mode. 

+ / 2~2 _k2 _k2 suggests an uncertainty about the sign ofk .  The expression k z =-qn K 0 x y 

in the plane wave interpretation of the 2D Fourier transform. This sign can be 
determined from a priori knowledge about the field. In the point source case it is 
obvious that the waves propagate upward for z>O and downward for z<O. When a 

priori knowledge is lacking information about dw(x,y,z) is needed to determine 
dz 

the sign of k. (and more generally the relative amplitudes of both contributions). 
The two types of plane waves can be drawn pictorially in two ways, as shown in 
fig. 3. 

/ /  0 " propagative 
( n k o ~ w _  ave 
t ) ;a~7 scent ~kll 

(a) 

kz,imag 

proj)aga~ve 
nk o 

do) 

p 

kz,real 

Fig. 3." Pictorial representations of  plane waves in k-space 
(a: (k,~, k.j-space, b: complex k~-plane). 

Fig. 3a shows a (k!j, k..) representation, in which the propagative waves have k- 
vectors on a circle and the evanescent waves have a real k~-value outside the 
circle and a (not shown) imaginary, k~-value. In fig. 3b the complex k..-plane is 
shown with the propagative waves along the real axis and the evanescent waves 
along the imaginary axis. 
It is worth emphasising here that the 2D Fourier decomposition has a relevant 
interpretation as plane wave decomposition only if the medium is uniform along 
the (x, y)-plane (for a given z). In media with a non-uniformity in the (x, y)-plane 
plane waves are no longer eigenfunctions of the wave equation and therefore the 
2D Fourier transform is no more a privileged tool m a wave context as it would 
require to additionally solve the coupling between in-plane waves. In a layered 
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structure with planar interfaces _l_z however, the field can m each layer be 
expanded in plane waves. This is extremely convenient since it is trivial to 
describe the propagation of a plane wave through such a layer and the reflection 
and transmission of a plane wave at a planar interface is also very simple. 
Therefore the problem of a point source in a layered structure, e.g. a planar cavity, 
becomes very simple through a plane wave expansion. 

An analytical expression for ~us(k~, k.  z) can be found either by calculating the 

Fourier transform of ~udx, y, z) directly or - more conveniently - by taking the 2D 
Fourier transform of the wave equation (6): 

d2 u/5(kx,ky,z)+(k2one -k2  -k2)qjs~cx,ky,z)=8(z ) (15) 
dz 2 

the solution of which is: 

qla(k"'k*v'Z)= 2~/n2k20 j - k  2 -k~, e - j~ln2kff - k2  -ky  [zl 

in which for the square root the solution with zero or negative imaginary 
chosen. 
Both ~,(x, y, z) and ~,flc,~ k~ z) are shown in fig. 4, for two values of z. 

(16) 

part is 

/ 

S z = O  

It 
x - n k  o nk o kx 
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Fig. 4: ~ain  real  space and in k-space (for y=O and ky=O). 

The figure of ~dlc~, k;~ z) clearly shows that the propagative waves have a 
constant amplitude but varying phase as a function of z, while the evanescent 
waves decay as Izl increases. It may be surprising that the amplitude of the 
propagative waves depends on (k,, kfl, while the source is isotropic. For 
k~ + k~ =n2 koZ the amplitude is even singular. All of this is a consequence of the 

fact that the solid angle corresponding to dk,~Iky is a non-linear function of kx and 
k;,. The plane wave amplitude under consideration is a density per unit of spatial 
frequency d k ~ k y  and not per unit of solid angle. We can clarify this further by the 
following manipulations. Inserting the specific form of (16) into (11) leads to: 

V s ( x , y , z )  = 

. . . .  "~l o - kx - ky  

(17) 

This equation (17) can be rewritten in terms of the elevation 0 and the azimuth cp, 
defined as: 

k x = nk  o sin 0 cos  q) 

ky  = nk  o sin (9 sin cp (18) 

k z = nk  o cos  0 

or alternatively in terms ofkll and ~o0. 
Using the Wronskian the conversion from one coordinate ~'stem to another can 
be done: 
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dkxdky = 

=ok, 

2 2 

~ . dOdq~ = n k o cos 0 sin OdOdm = nkok z sin OdOdm 

ok, 

am 

(19) 

The solid angle dO associated with (dk, dky) or with the equivalent (dO, d~o) or 
(dkll,d~o) is given by: 

d ~ =  sinOdOdm= 1 dkxdky - 1 kll dklldm (20) 
nkok z nko kz 

The boundaries of the integration are given in the following table. 

propagative 

evanescent 

kx,ky 

Ikx[ <_nk o and 

[k~[ > nk o or 

0,9 
O<O<_rt/2 

O<_m<_2rt 

x/2 + jO <- 0 < zt/2 + jm 

O<_m<_2x 

kll, T 
0 < kll < nk o 

O<q~<_2n 

kll > nk o 

O<m<_2n 

This leads to the following alternative formulations of equation (17): 

V~(x ,y , z )  

. . . .  r l < ] 1 dkxdky = .I f .~ f ] v(2n)2jnk° | [exp(/(k,x + kyy + k~Iz I nkokz 

(a/2 n/2+joo'~2m'- 7 

J" o Izl))]ls.,OaOdm] (21) 
\ 0 7t/2+jOJ 0 ' ' ~  ~ .a  

= f ?[ j,ko ak, 

In each of these expressions the first term between brackets has the meaning of 
plane wave amplitude per unit of solid angle or mode density or density of states, 
the second term is a plane wave and the third term is the solid angle d O  
Expressed m this way, the equations show that the mode density is independent of 
k-vector direction, as expected for an isotropic point source. Furthermore the 
mode density is proportional to refractive index and to frequency. The formulation 
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in terms of 0 and ~o is elegant for the propagative part of the field, but less elegant 
for the evanescent part because 0 becomes a complex number. 
If the medium surrounding the point source has a complex refractive index, 
whereby the imaginary pan represents loss or gain, the same Fourier transform 
approach for plane wave decomposition can still be followed. The plane waves in 
this expansion are somewhat uncommon however since their phase fronts do-not 
coincide with their iso-amplitude planes. The latter are parallel to the (x,y)-phne 
(by choosing kx and k s to be real in the Fourier a'ansform), while the phase fronts 
are perpendicular to the vector ~ k~ Re(k~)). Nevertheless these plane waves 

satisfy the wave equation, since k 2 + k : + k  ~ =n2k 2. Furthermore the clear 
x y z o 

distinction between propagative and evanescent waves vanishes in the complex 
case. 
From a physical point of view it would be more logical to expand the field into 
plane waves of the form exp(-j(nkAc+nkyy÷nk,z)) with kx, Icy and k, real and 

k 2 + k 2 + k~ = k 2. While these plane waves have a constant amplitude along their 
x y 0 

phase front, they do not have a constant amplitude in the (x,y)-plane and therefore 
cannot be used as basis for the Fourier transform along x and y, as needed for the 
treatment of layered structures. 

3. Point  source  near  a s ing le  mirror  
Consider the simple case of a mirror with field reflectivity r and a distance d away 
from an isotropic point source (Fig. 5). 
The point source field can be expanded into plane waves, as described in the 
previous paragraph, and we consider the components with angle 0 and rr-0 
respectively (and arbitrary value for ~o). These components have the same (k, ky) 
and opposite k.,. Upon reflection the downward propagating plane wave will get 
the same k-vector as the upward propagating wave and hence the total upward 
field will be the sum of both. 

z = d  . . . . . . . .  1 ( ~ - - ~ - - -  . . . . . .  
I ' , ~ Y  

z = o  ] ~ " f i e ld  r e f l e c t i v i t y  i" 

Fig. 5. Point source near a single mirror. 

The total field for these components can thus be ~xitten as: 

0 <_ z <_. d : Aexp(- j(kxx +kyy)~exp(+ j k : ( z - d ) ) + r  exp(- jkz(z  +d))] 

z > d :  Aexp(- j (kxx+ky .v) iexp(- jkz (z -d) )+rexp(- jk~(z+d))  ] (22) 

with k z = koncosO 

In the region between the point source and the mirror each plane wave component 
gives rise to a standing wave pattern. In the other region there are only outward 
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plane waves. The phase difference between the direct and the reflected 
contribution is given by 20 + phase(r), with 

= kond cosO (23) 

In Fig. 6 a few situations are shown for the case where r =-1. For combinations of 
2. n, d and ~ for which ~=rd2 (+mrc), the standing wave pattern has an antinode 
position at the point source location and both outward propagating contributions 
interfere constructively. 

7t j > L 
37~ 

Fig. 6: Total f ield for r =-I and different ~-values. X denotes the position o f  the 
point source. 

In the opposite case for which ¢=n~-m~r the point source is located at a node of the 
standing wave pattern and the two outward contributions interfere destructively. 
This means that in this particular direction the point source does not radiate any 
power. In other words the presence of the mirror has a dramatic impact on the 
radiation profile of the point source, that ceases to behave as an isotropic radiator. 
From this discussion one can conclude that emission by the point source in a 
particular direction will be strong if, and only if, the total field caused by the point 
source emission in that direction (and its corresponding direction) is strong at the 
position of the point source itself. 

To elaborate this point we calculate the normalized radiation profile of the point 
source in the upward direction: 

I(0)= Power flux (0) with mirror =l l+rexp(_j2dp~ e 

Power flux (0) without mirror (24) 

= 1 +r 2 + 2rcos2¢ (for r real) 

The maximum, minimum and average of I (~  over all O-values are given by: 

maximum=(/+[rl) 2 

minimum= (1- Irl) 2 (25) 

average = 1 + M 2 

This shows that for a perfect mirror (Irf = 1), the power radiated by the point 
source in a particular (upward) direction can be anything between zero and four 
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times the power radiated without the presence of the mirror. The average power is 
twice that without mirror, as expected. 

4. Point source within a simple cavity 
As a next step we consider the case of a point source in between two parallel 
mirrors, as shown in fig. 7. 

°21 
I" 1 , t 1 

r2, t 2 

Fig. 7." Point source within a simple cavity. 

As in the simple mirror case the point source field is decomposed in plane waves. 
The total field amplitude of the plane wave component in the direction 0 and in 
the plane of the point source, caused by point source emission in the directions 0 
and x-0, is given by 

All + r r, exp(- j2 )+ d d  (- 
+ Ar2 exp(-j2Oz~l+rlrz exp(-j2O)+rl2r2 (-4j(k)...] (26) 

= A[l+r 2 exp(- 2j~2) ] fo+~r21 <1 
1 - rlr: exp(- j20) 

with 

dpl = kond l cosO 
d~ 2 = kond 2 cosO 

¢=¢t+¢2 

For rff:=l the infinite series m equation (26) has no meaning as a function since it 
does not converge. In a distributional sense one can write however: 

A[1 + r 2 exp(- 2j¢2)I1 + exp(- j2qk )+ exp(- j4¢0+.. .  ] 

= ,411 + r 2 exp(- 2je) 2)[1 + cos(2~) + cos(4q0+ ... - j(sin(2~))+ sin(4qJ)+...)] 

[-1 rc +~ =A[l+r2exp(-2jqk2)l~+-~=_ d(O-ncr)-JP.V.(c°t(O)) ] 

(27) 
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whereby P.V. stands for the principal value of the cot-function around each 
singularity. One should note that the expression for r~r2=l is not simply the limit 
for rlr2 towards 1 of the expression for Irtr2t<l. A series of dirac-functions needs 
to be added at the singular points. This is relevant in the context of guided modes, 
as will be discussed in paragraph 8. 
For Ir~r21<l the radiation pattern (within the cavity) for upward emission in the 
direction 8is then given by: 

Power flux (0) with cavity i(o)= 
Power flux (0) without cavity 

(28) 
= (  l + r 2  + 2r2 cos 2 C 3  (for r2 real) 

11 + rlr 2 exp(- j 2~ ~2 

This equation indicates that two factors have an imlmct on the point source 
radiation profile. The denominator 

1 (29) 
II - r, r2 exp{- j 2¢ ]2 

is called the cavity enhancement factor or Airy factor. It depends on r~, r2 and 
but not on the point  source position. The numerator 

1 + r 2 + 2r 2 cos 2d~2 (30) 

is very similar to the radiation pattern of a single mirror and can be called the 
standing wave factor. It obviously depends strongly on the position of the point 
source and leads to a similar conclusion as in the single mirror case: the radiated 
emission in a particular direction is high ff the standing wave field strength at the 
point source is high. 

At this point the concept of resonance can be introduced. A resonance - or 
resonant mode - can be described as an electromagnetic field of which the cavity 
enhancement factor goes through a maximum. In a given planar cavity this will 
happen for particular combinations of wavelength and radiation direction. For a 
simple situation in which r~ and r2 are real, of equal sign and independent of A, and 
0, resonance occurs for 

2¢ = 2mx  (31) 

with m a positive or negative integer. 
This condition can be rewritten as 

nrd cosO = m--  
2 

where nr is the real part of n, or as 

(32) 

7t 
(33) kz  = r o -  

d 
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where k, is the z-component of a plane wave k-vector in the direction O. This latter 
form of the resonance condition calls for a simple graphical representation in k- 
space as shown in fig. 8. 

1",,. 

J 

Fig. 8: k-space representation o f  emission in cavity. 
The dots represent cavity resonances (a dot in the upper space and its symmetric 

dot in the lower space belong to the same resonance). 

Resonance occurs along the planes k z = m - - .  However for a given wavelength of 
d 

emission the k-vector satisfies the dispersion equation 

kx 2 + k y + k  2 =  n (34) 

which is represented by a sphere. Therefore resonance can only occur at the 
crossing of the resonance planes and the sphere, as indicated by the dots in the 
figure. The resonant plane waves therefore form cones of k-vectors, one of which 
is indicated in the figure. It is clear that at a given wavelength the resonant modes 
form a discrete set as a function of 0 and a continuous set as a function of ~o. From 
the figure and from equation (33) it is clear that the number of resonant modes (or 
rather of resonant cones) will increase as the cavity thickness is increased. Vice 
versa, by decreasing the thickness the number of cones can be decreased to 1 (or 
even 0 in special cases). 

An alternative way to write equation (31)-(33) is through the quantity me, being 
the cavity thickness expressed in number of haffwavelengths: 

d 
m c = (35) 

Li/ 2n 
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The resonance condition is then rewritten as 

m c cosO = m (36) 

From this equation it is clear that the number of discrete resonances is limited to 
[mc] (= integer(mc)). The integer quantity [m~] is called the cavity order, ff the 
resonance for m=0 (0 = 90 °) is also counted the number of resonances actually 
equals [m~]+l. Such a mode can only exist when the field is independent of z in 
the cavity. This is only possible in the theoretical case where r2=r2=+l. So in 
practice the m=0 mode is not very relevant. 

The resonator can be either "perfect" or "imperfect". A "perfect" resonance mode 
is a mode that will continue to exist without amplitude decay after removal of the 
source that excited the resonance. In a planar cavity a perfect resonance arises 
when 

This means that 

Irlr2 e x p ( -  j 2d~  = I (37) 

= l 

with ni the imaginary part of n. 

(38) 

Such a "perfect" resonance occurs either when the cavity is lossless and has 
perfect mirrors or when the medium exhibits enough gain to compensate for the 
losses. This latter situation is what happens in a laser and the resonant mode is 
then called a laser mode. 
The function 1(8) becomes singular in the case of a perfect resonance and contains 
an odd cotangent-part together with an even delta-part. This may seem unphysical 
but it is not, since the singularity only occurs for discrete angles each carrying an 
infinitesimal fraction of the source power. 
In the case of an "imperfect" resonance, the resonant mode will decay with time in 
the absence of a source to sustain it. The reason for the loss of power is either 
absorption or partial transmission through the mirrors. The quality of the resonace 
is commonly described by the quality factor Q or by the cavity finesse F, both of 
which are defined in the next figure. 
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F -  
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Fig.9: Definition of Q-factor (Q) and finesse (F). 6co is the spectral width at half 
maximum of the resonance peak. 

In this figure, COo is the central resonance angular frequency, Aco is the separation 
between two adjacent resonances and 5<o is the full-width half-maximum value of 
the resonance peak. The quality factor Q is defined as the ratio of COo to &o, while 
the finesse F is the ratio of Aco to 8co. In other words a finesse of, say, 100 means 
that 1% of the angular space (for a given wavelength) or 1% of the spectral space 
(for a given direction) is enhanced by the cavity. 
For imperfect resonances the k-space picture of fig.8 should be slightly modified. 
Due to the finite finesse the resonance planes should be broadened to slabs. If on 
top of that the point source is not monochromatic but has a non-zero spectral 
width (as in the case of spontaneous emission from a semiconductor), the 
dispersion sphere should be broadened to a shell. This leads to fig. 10 in which the 
volumetric overlap between the slabs and the shell identifies the resonant regions. 
The k-vectors in this figure are k-vectors in the medium of the cavity with 
refractive index n. Transmission to the outside world (generally with refractive 
index of 1) can only occur for k-vectors within the extraction cone, also indicated 
in fig. 9 and described by the equation 

kit (39) 
kz =~n2_ 1 
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O n  COLIC 

Fig. 10: k-space representation of emission in an imperfect cavity, with thermally 
broadened emission. 

This means that resonant modes can be divided in two types: those that can escape 
and those that cannot. The fast give rise to a standing wave pattern within the 
cavity, and propagative waves outside the cavity. They are often called Fabry- 
Perot modes or also longitudinal cavity modes. The second also give rise to a 
standing wave pattern within the cavity but to evanescent waves outside the 
cavity. In other words no power leaks away to the outside of the cavity and hence 
these resonances are called guided modes. Fig. 11 shows a typical field amplitude 
for both a Fabry-Perot mode and a guided mode. 

n2 / 

°2 \ I 

> / n2 

nl 

n2 

only possible if nl>n 2 
(a) Co) 

Fig. I1: The two types of  resonant modes: 
Fabry-Perot modes (a) and waveguide modes (b). 

It is worth emphasising once more that, what we call a resonant mode here, is a 
plane wave field distribution that is subject to cavity enhancement. This 
enhancement takes place over a t'mite range of plane wave directions for each 
mode. This point is elaborated further in paragraph 8. 
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5. Transition to a vectorial electromagnetic problem 
So far we have considered a scalar wave approximation of emission from a planar 
cavity. This implied not only that the fields were considered to be scalar but also 
that the point source was represented by a scalar source tenn. In reality, we do 
have to consider a vectorial electromagnetic problem with vectorial fields and 
vectorial sources. 
In a umform layer, Maxwell's equation can be rewritten in phasor notation as; 

V : E + k ~ n:  E = sources 
(40) 

H =  J V × E  
colt o 

While in the wave equation for E the three field components of E are decoupled, 
coupling does arise from the continuity, equations at abrupt interfaces between 
layers, where the tangential components of E and H need to be continuous. In a 
layered structure (with layers perpendicular to the z-axis), this means that the x- 
and y-components need to be continuous. As in the scalar case, any field in a 
uniform layer can be decomposed into plane waves. In the vectorial case these 
plane waves have a polarisation, i.e. a particular time evolution of the E-field 
orientation. For monochromatic waves the most general type of polarisation is an 
elliptic polarisation. This means that the end point of the electric field vector will 
follow an elliptic trajectory in time (with one revolution per period) in the plane 
normal to the k-vector (as shown in fig. 12). An elliptically polarised field can 
however be seen as the sum of two linearly polarised fields with orthogonal 
polarisation. 

× 

Fig. 12: General plane wave with elliptic polarisation. 

In principle an arbitrary choice can be made for the direction of the linear 
polarisations in this decomposition. In layered structures it is very elegant to make 
a particular choice, known as TE-TM decomposition The TE (Transverse 
Electric) plane wave (also known as E-wave or s-wave) has its E-field in the (x- 
y)-plane and orthogonal to k. This means that the E-field is transverse (meaning 
orthogonal) to the plane of incidence with respect to the layer structure, being the 
plane formed by the k-vector and the z-axis. The TM-wave (or H-wave or p- 
wave) has its H-field transverse to the plane of incidence. The names TE and TM 
are widely used but nevertheless misleading since both TE- and TM-waves are 
TEM-plane waves in umform space (transverse electric and magnetic waves with 
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both E and H-field orthogonal to k). In fig. 13 the field orientations of both TE 
and TM-waves are shown. 

H E 

TE (s) TM (p) 
Fig. 13: Definition of TE and TA[ 

The reason for the particular choice of TE and TM-waves to decompose an 
arbitrary polarised plane wave is that these hnear polarisations are the only ones 
that maintain their polarisation after reflection or refraction at a planar interface. 
In other words: a TE-field incident upon a planar interface generates a TE- 
reflection and a TE-transmission (and vice versa for TM). This means that the 
overall analysis of electromagnetic wave propagation in isotropic layered 
structures can be decomposed into two entirely uncoupled systems: a TE-system 
and a TM-system 

The second problem to deal with relates to the vectorial point source. In 
electromagnetic theory, two Dpes of vectorial point sources are generally 
considered: the electric dipole and the magnetic dipole. The first can be seen as a 
point-source-like current density whereas the second as a point-source-like loop 
current. It is well established that spontaneous emission in a semiconductor can be 
very well represented as electric dipole emission (at least in the weak-coupling 
limit). Any electric dipole source can be decomposed in a parallel electric dipole 
(with current density or dipole moment in the (x-y)-plane) and a perpendicular 
electric dipole (with current density or dipole moment along z). In bulk 
semiconductor material the dipole can have any orientation. This means that one 
third of the power generated by the dipoles is generated by perpendicular dipoles 
(z-direction) and two thirds by parallel dipoles (x and y-direction). In quantum 
wells there is a preference for emission through parallel dipoles [Yamanishi, 
1984]. It is well known [Van Bladel, 1964] that a plane wave component of the 
field resulting from an electric dipole has an electric field in the plane of the 
dipole moment and of the k-vector. Furthermore the E-field is maximum for 
emission in the plane normal to the dipole moment and drops sinusoidally to 0 for 
emission in the direction of the dipole moment itself. All of this leads to the 
conclusion depicted in fig. 14. 

The complete vectorial problem can be decomposed in three simple scalar 
problems ([De Neve, 1997], [Benisty, 1998a]): 

the TE-fields generated by a parallel dipole; 
the TM-fields generated by a parallel dipole; 
the TM-fields generated by a perpendicular dipole. 

The perpendicular dipole does not generate any TE-fields. 
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In many practical micro-cavity LED's the perpendicular dipoles have virtually no 
contribution to the power coupled to air. The power emitted by the perpendicular 
dipoles into the small perpendicular extraction cone is obviously small (unless the 
cavity has a ve~ strong resonant enhancement in this direction). Furthermore, the 
relative occurrence of perpendicular dipoles is small in quantum-well active 
layers. So, in many cases the full vectorial treatment reduces to two relevant 
scalar problems: one TE and one TM problem, both for a horizontal dipole. 

In fig. 14 the amplitude of the plane wave contributions to the dipole fields is 
given. Only the propagating plane waves are shown. To these should be added the 
evanescent contributions. This can be done by reformulating the plane wave 
amplitude in terms of k Expressed as a density per unit of solid angle, this leads 
tO: 

parallel dipole 
TE-field ampl.: ,4 sin~o 
TM-field ampl.: A (k.~nko)cos~o 

perpendicular dipole 
TE-field ampl.: 0 
TM-field ampl.: A k I (nko 

whereby in these expressions q~ ranges from 0 to 2n and kll ranges fi'om 0 to nko 
for the propagative contributions and from nko to infinity for the evanescent 
contributions. 
In the parallel dipole case the dipoles are generally randomly oriented. This means 
that one can work with an average feld amplitude over q~ (in root mean square 
sense, since one considers an ensemble of non-correlated, random oriented dipoles 
implying that the total power density is the sum of the contributions from the 
individual dipoles), leading to the final result for the plane wave amplitude 
(expressed as a density per unit solid angle): 

parallel dipole 
TE-field ampl. A / f 2  

TM-field ampl.: (A/'4-2 kJnk o 

perpendicular dipole 
TE-field ampl. 0 

TM-field ampl.: Ak, Jnk o 

Again ¢p ranges from 0 to 2n and k~l ranges from 0 to nko for the propagative 
contributions and from nko to infnity for the evanescent contributions. 

parallel electric dipole i perpendicular electric dipole 
[ 

I 

s~n~ cosOcos~o ! ~ A ~ n O  
i 
1 

I 
] 
] 

TE TM , TM 
Fig. 14." Decomposition of  a general vectorial dipole problem into a set o f  three 

scalar problems. The amplitude of  the plane wave decomposition is given in each 
case. The plane shown is the plane where ~o=0 or x. 
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6. Mirrors for  p lanar  cavi t ies 
In planar cavities one can basically make use of two types of mirrors: metallic 
mirrors or multilayer dielectric mirrors. Mirrors made of metals such as gold or 
silver provide high reflectivity over a wide angular and spectral range and 
therefore they are rather ideal mirrors. However they can only be used as rear 
reflector in a micro-cavity LED and not as a front reflector to couple fight to the 
outside world. To use a metallic mirror as a front reflector the metal layer would 
need to be thin enough to keep the absorption of the transmissive wave low 
enough but thick enough to keep the reflectivity high enough. These two 
requirements are generally incompatible. When the metallic mirror is also used as 
an electrical contact to the semiconductor, a technological problem arises. To 
form a reliable electrical contact the metal-semiconductor interface is normally 
alloyed at high temperature. This however destroys the high reflectivity of the 
metal. Therefore a non-alloyed contact has to be used. Although good non-alloyed 
contacts can be made by using very highly doped semiconductor layers, the long 
term reliability of such contacts is unclear. 
Multi-layer dielectric mirrors - in particular Distributed Bragg Reflectors (DBR- 
mirrors) - can provide very high reflectivity over a limited angular and spectral 
range. They are often rather thick which means that the effective thickness of a 
cavity with one or two DBR-mirrors can not be very small. 
To analyse the properties of both metallic and dielectric mirrors, we first review 
the properties of single dielectric interfaces. In fig. 15 the reflection and refraction 
of a plane wave incident upon an interface from a medium with (complex) 
refractive index nj to a complex refractive index n2 is considered 

i 
i 
i 

t 
i 

i 

n 2 :,---02 ~ n 2 - 

n l E ~  E~O1 ~ l , 
N H ' 

TE TM 
Fig. 15: Reflection and refraction of  a plane wave at a planar interface (for both 

TE- and Z~f-case). 

Continuity of the tangential field components (and hence equality of the kll-values 
in both media) leads to the following equations: 
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TE -case 

TM-case 

n I sinO 1 = n 2 sinO 2 

klz - k2z 
r~ 

klz  +k2z 

R E =]rEI 2 

T E = 1 - R  e 

2klz 
t E - - -  

ksz + k2z 

Re(k2z ) 2 
V~ = R~(kz~) t~ 

(41) 

n l sinO 1 = n 2 sinO 2 

#'H = / 2  
ksz , !n  l +k2z,!'n ~ 

R H =[rH[ 2 

T H = I - R  H 

2 k l z / ' n f  
t H = 

klz / n  2 + k2z /Irl 2 

Ret-T/ 
\ n2 ) . ,2 

z .  - ~ I' .  I 

t j 

(42) 

re and rH are the field reflections for E-field and H-field respectively and R and T 
denote the power reflectivi~ and transmittivity, k~: and k2z are given by: 

~2 2_k,~ (43) ki: = n, k o , 

Two comments need to be made about the expression T = 1-R. The quantity T is 
not the amplitude ratio of the transmitted Poynting vector to the incident Poynting 
vector, but rather of their projection onto the z-axis. In other words it refers to the 
ratio of power per unit of interface area. Secondly, the expression T=I-R is 
actually incorrect when the refractive index of the medium of incidence has an 
imaginary part. In that case the total Poynting vector in the medium of incidence 
can no longer be written as the sum of a Poynting vector of incident and reflected 
field respectively but also contains cross-terms of both fields. Correct expressions 
for this case are: 
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Im(k, ) 
T E  " R + T + 2 - - 1 m ~ ' E  ]= I 

R e ( k , z )  

knt ) .  1.~ 
T M  " R + T + 2 - - 1 r n y ' t t  ]= 1 

For normal incidence the distinction between TE and TM vanishes and we get: 

(44) 

n I - n  2 
rE = --rH -- - -  

I'l 1 +17 2 

2 n  z 
t E - - -  a n d  t H - - -  

Fl 1 + rl 2 

n z --I'l~ 2 

R E = R H = * _ 

tnz +n21 

TE = T H - 

2 n  2 

H l + tl 2 

Re(n_____2) 2n_____L__l 2 

R e ( h i ) I n ,  + h e  I 

(45) 

In figure 16 and 17 the amplitude and phase of re (TE-case) and rH (TH-case) are 
shown as a function of angle of incidence for two widely used interfaces in 
semiconductor structures. The structure considered in fig. 16 is a simple 
semiconductor to air structure. The figure clearly shows the phenomena of total 
internal reflection (TtR) for 0larger than about 17 °, the changing phase o f r  in the 
TIR regime and the Brewster effect for the TM-wave (for which O # - O F z r / 2 )  T h e  

structure of fig. i7 is a Wpical semiconductor heterojunction, as used for example 
in a DBR-stack. The same phenomena can be seen but they are spread over a 
larger angular range. The very distinct behaviour of TE- and TM-waves do, 
among others, imply that TM-light can more easily escape from a semiconductor 
to air. On the other hand a TE-wave will generally exhibit a stronger cavity 
resonance. 
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Fig. 16: Amplitude and phase of  the field reflection coefficient for both TE and 

TM waves for a semiconductor (n = 3.5) to air interface. 
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Fig. 17: Amplitude and phase of  the field reflection coefficient for a 

semiconductor (n = 3.5) to semiconductor (n = 3.2) interface. 

In fig. 18 we consider the case of a typical semiconductor to metal interface. The 
metal considered is gold with n=0.2 -j6.5. One can see that the field reflection 
amplitude is close to 1 for all angles of incidence and both for TE- and TM- 
waves. For normal incidence the phase of the reflection coefficient for the TE- 
field is about 120 ° (while it would be 180 ° for a perfect metal). This means that in 
a cavity with a gold mirror, the metal interface needs to be closer to the cavity 
center by an amount equal to about 2/12n as compared to the equivalent cavity 
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with a perfect metallic mirror. As a function of angle the phase of the reflection 
coefficient does behave distinctly different for the TE and TM-case. Because of 
this a cavity that is resonant for normal incidence (both for TE and TM) will move 
away from resonance more rapidly in the TE-case than in the TM-case. 
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Fig. 18: Amplitude and phase of the field reflection coefficient for a 
semiconductor to metal interface. 

We now turn our attention to multi-layer dielectric mirrors. The overall reflection 
and transmission of multi-layer structures upon incidence of a plane wave can be 
analysed in an elegant way with the transfer matrix method [Brekhovskikh, 1960], 
[Born, 1990]. For a structure as shown in fig. 19 this method leads to a linear 2x2 
matrix relation between the complex amplitude (of E-field for TE and of H-field 
for TM) of an incident plane wave FI with angle of incidence 0r and the resulting 
reflected wave Bt (also with angle 01) and the resulting transmitted wave FN with 
angle 0v: 

t~8 )~,Bn ) (46) 

whereby B~ represents the amplitude of a backward incident wave in medium N 
(which is 0 if no wave is incident from this end). One should realize that in a 
layered structure with parallel interfaces and one incident plane wave all forward 
and backward plane waves in any layer have the same k~ an ky values due to the 
continuity relations at the interfaces. Hence we can write: 

n j  s i n  01 = n 2  s i n  02 = n i s i n  0 i = n j s i n  0 i = n~: s i n  0 N (47) 

where n, represents the refractive index (more precisely its real part) of layer i. 
The coefficients tFF, tF~, tBF and tBB depend on the layer structure (thicknesses, 
refractive indices), on the wavelength and angle of incidence of the incident plane 
wave and on its polarisation (TE or TM). 
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Ft 

F N 

• . .  . . .  

2 i j BN = 0 

y t~ z 

Fig. 19: Multilayer structure with incidence o f  a plane wave. 

From this matrix equation the overall reflection and transmission coefficients can 
be readily derived: 

r - 
B l  _ t B F  

F l  tFF 

F v 1 

F l t ~  

(48) 

A Distributed Bragg Reflector (DBR) or quarter-wavelength stack is a structure of 
alternating layers of high and low refractive index, each a quarter wavelength 
thick, as shown m fig. 20. 

n 2 

nL 
nH 

n L 
DH 
nL 
nH 

n 1 
4nH 4n L 

I N penods 

Fig. 20. • Distributed Bragg reflector. 

Upon incidence of a plane wave this structure gives rise to strong reflection when 
the Bragg condition for diffraction in periodic structures is fulfilled: 

ka,p-r~,cte d = ki,,~,de,,t + mKgrat,,,g (m integer) (49) 

together with the dispersion relation: 

kd  roc,e  : = ( 5 0 )  
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The grating vector Kg~,g is oriented along the direction of periodicity and has a 
length: 

Kgr~nng = 27t (51) 
period 

This leads to the conclusion that the multitayer structure has a strong reflection for 
normal incidence when the period equals haft the wavelength (or a multiple of 
that). The highest reflectivity is actually obtained when both the high and the low 
refractive index layer are each a quarter wavelength thick, i.e. 2/4nH and A/4nL 
respectively. The wavelength for which this occurs is called the Bragg wavelength 
2B. For plane waves with oblique incidence the wavelength of maximum 
reflectivity 2,,~ shifts to shorter wavelengths according to (approximately): 

km~ x = k B cosO (52) 

Fig. 21 shows the field reflectivity (amplitude and phase) for a typical GaAs-AIAs 
DBR (nn = 3.5, nL = 2.9) for normal incidence as a function of wavelength. 
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Fig. 21: Amplitude and phase of the field reflection coefficient for the DBR-mirror 
shown as a function of wavelength, with 9. 5 and 19.5 layer pairs respectively. 

The peak power reflectivity is given by an analytical formula [Macleod, 1986 and 
Yeh. 1988]: 

f x2N ~2 

1_"21".11 
I - - - - ~ ,  2N 

l + n 2 ( n " l  ] 
/7I ~. nL J J 

(53) 
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if the first layer of the quarter-wave stack has refractive index nH (in the opposite 
case nH and nL need to be reversed). 
The spectral width A2 around 28 for which the reflectivity is high increases with 
the contrast nmnL and is given by [Yeh, 19881: 

AX 4arcsinlnH-nL) 2&n 
- ~ (54) 

Lt3 ~ ~.n H +n L 7~ n 

at least if the number of pairs N is sufficiently large. 
The phase of the reflection coefficient is not constant within this wavelength 
range but changes approximately in a linear way as a function of wavelength. In 
view of this, one can define an effective penetration depth of the DBR-mirror, 
defined as the depth (measured from the first DBR-interface) where a single 
mirror interface (with wavelength independent phase of reflection) should be 
positioned to give rise to the same phase slope around 2=tB as the DBR itself. 
This penetration depth is approximately given by [Ram, 1995]: 

Leff,~ .~ XB nHnL (55) 
4nrefnref n H - n  L 

In this equation a reference refractive index nr,y is introduced, which is the 
(arbitrary) refractive index of the fictitious medium in front of the equivalent 
mirror, often chosen to be equal to the refractive index of the cavity core nl. 

In fig. 22 the reflection coefficient of a DBR-mirror with nH = 3.5 and nL = 3.2 is 
shown as a function of angle of incidence (for 2 = 2B). As expected from the 
Bragg-condition one can see that the reflectivity is high for a limited angular 
range only. 
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Fig. 22." Amplitude and phase of the field reflection coefficient for the DBR-mirror 
shown, as a function of  angle of incidence, for both TE and TM polarisation. 
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Outside this range the DBR-mirror is not very reflective at all, but highly 
transmissive or "leaky". This is particularly so for the TM waves where the single 
interface reflectivity decreases with increasing angle of incidence, down to zero 
reflectivity at the Brewster point (which is the same for the nn to nL interface and 
for the nL to nu interface). The behaviour as a function of angle has a lot of 
resemblance (for small enough 0) with the behaviour as a function of wavelength 
(around 28). This can be understood from the fact that the optical thicknesses of 
the layers are proportional to cos8/)_ Therefore a change of angle A(cosO) (around 
8=0) is equivalent to a relative change of wavelength AA/28 (around 2B), if 
A(cosO)=A2/2~. So one can expect the angadar width of high reflectivity to be 
given by: 

( A_~) ~Z nHnn-nL+nL (56) 2 1 - cos = )vB 

in which AOis the full width of the high reflection region. 
The above argument of equivalence between the spectral and the angular domain 
is approximate for two reasons. First the reflectivities of the individual interfaces 
have a different spectral and angular behaviour. Secondly the change of cosO is 
slightly different for each layer due to refraction. Around 0=0 one can derive from 
Snelrs law that a change of cosO~ in layer i relates to a change of cosOj in layer j 
as~ 

n:A(coso,) .  (coso,) (57) 
From this discussion one can understand that the phase of the reflection 
coefficient varies with the angle of incidence in a cosinusoidal way, as can be 
seen in fig. 22. As in the spectral case one can define an effective penetration 
depth, now defined as the depth of a single interface (with angle independent 
phase of reflection) such that the phase slope (with angle) is the same as for the 
DBR itself. For sufficiently small refractive index difference nn-nL this "angular" 
penetration depth equals the "spectral" penetration depth 

Lejy,~ = Le~- ~ (58) 

When nn-nz, increases the error due to equation (57) increases. If again we assume 
that the imaginary material in front of the effective mirror has a refractive index 
rtref, w e  can write: 

n~ A(cosO n )= n~ A(cosO L )= nfefA~OSOeft ) (59) 

Hence the average A(cosO) in the actual DBR is given by: 

A(co OH )+ ,,(cosO  ) : 1(1__ + l  
2 2Ln2 nZ j v , ~ ,  (60) 

From this we can derive a more accurate expression for L~o [Ram, 1995]: 
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= - - -  1 1 2  1( 1 +~L nrefLeff'~ > Leff't (61) Left'° 2 ~ n h 

For an extreme case where for example nH= nre/=3.5 and nL = 1.5, the correction 
factor is 3.2. 

The requirements that DBR-mirrors have to satisfy, strongly depend on the 
application. In VCSEL's the key requirement is very high reflectivity (well above 
99%) for normal incidence. The main problem generally is to avoid losses due to 
scattering at interfaces with some residual roughness or due to absorption in the 
layers, for example due to doping of the semiconductor layers. The larger the 
refractive index contrast, the easier it is to achieve a very high reflectivity. In 
Micro-Cavity LED's the key problem is very different. In this device the mirror 
should be highly reflective for all angles of incidence and therefore the leaky, 
angular region of the DBR should be as small as possible. Furthermore the cavity 
length should be small to reduce the number of resonances and therefore the 
penetration depth should be small. Both factors call for a DBR with high 
refractive index contrast. So both devices take advantage of a large refractive 
index contrast, but for very, different reasons. 

7. A dipole in a planar cavity 
In paragraph 2.3 the case of a point source in a simple cavity was discussed. We 
now consider the more realistic case of a dipole in a cavity with planar mirrors. 
The total field can be derived by expanding the dipole source into plane waves as 
discussed earlier and by calculating, for each plane wave component, the total 
plane wave amplitude as a result of the cavity interference. 

Consider fig. 23 with a dipole in an arbitrary planar cavity. The dipole is either a 
horizontal or a vertical dipole. 

top 
mirror 

bottom 
mirror 

. . . . . . .  a_ ~ _ ~ e _ ~ _  _ _ _ r_ef_e~_nc_e_ p l a _ n e  

Fig. 23:,4 dipole in an arbitrary cavity. 

A reference plane is defined through the dipole and parallel to the mirrors. The 
plane wave field amplitude of the dipole source is denoted as: 

W~Ppote(kx,ky) (62) 
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for the field propagating towards the top mirror and 

down L ~ qJ d,pole ~K,, Ky ] (63) 

for the downward field. 
These represent the E-field amplitude in the TE-case and the H-field amplitude in 
the TM-case. Depending on the case (vertical or horizontal dipole ; TE or TM) 
and on the sign convention we can write: 

up + down 
qldipole(kx ,ky)= _qldipole(kx,ky ) (64) 

The total plane wave amplitude in the reference plane is denoted as 

qJtuoPtal (kx,ky )and q:t~°ta~(kx,ky ) (65) 

respectively. The plane wave field reflectivity of the top and bottom mirror are 
denoted as: 

rtop(k.,ky)andrbo.om(kx,ky ) (66) 

respectively. Continuity (or self-consistency) of the fields at the reference plane is 
then expressed as: 

[~gdownt,_ up + down k k 
total [Kx,] (y~bot tom(kx ,ky)+Wdipole(kx ,ky)~top(kx ,ky)  I~ldtpole( x'  y)= 

down(kx,kv ) (67) 
~1 total 

From this equation the total downward field can be derived 

down 
down q: aipol, + W~fipot, rtop (68) 

ql tota I -- 
1 - rtoprbottom 

Likewise 

up + down 
up k[I dipole qJ dipole?bottom 

qJ total = 
1 - rtoprbo.o,, , 

(69) 

Fig. 24 shows a generic example of a dipole in the middle of a semiconductor 
layer, one wavelength thick, surrounded by air. This is a cavity with rather modest 
mirror reflectivity (about 30%) for normal incidence and perfect reflectivity 
(100%) for oblique incidence in the total intemal reflection regime. 

This is a generalisation of equation (26) and the term I/(1-rtoprbotto,,) m these 

expressions leads to a more general Airy. factor. 
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Fig. 24." Total plane wave field amplitude in a A-cavity as a function of angle for 
both TE and TM wave. 

For normal incidence the standing wave pattern has maxima at both interfaces and 
at the position of the dipole. Therefore a resonance for normal incidence can be 
expected. In fig. 24 the calculated total downward field is shown as a function of 
0 for both the TE- and TM-case. 
In this figure the dipole field amplitude dependence on 0 and ~ (as shown in fig. 
14) is not taken into account but can be included in a trivial way. One can see two 
resonances: the first is a broad resonance from 0 = 0 up to 0 - 0c. The second is a 
sharp guided wave resonance at about 0 = 68 ° for TE and 0 = 60 ° for TM. This 
resonance leads to a singularity in the total field (and hence an infinite quality 
factor), as expected for a lossless cavity with total internal reflection at both 
mirrors. The broad resonance shows a peculiar feature. While phase resonance 
obviously occurs for O = 0, the total field peaks for 0 = Oo This can be understood 
easily. For 0--- 0 ° the phase resonance is optimal but the reflectivities are low. For 
0 = 0~ the phase resonance is not perfectly fulfilled but the reflectivity reaches 
100% and hence the Airy factor is stronger than at 0 = 0 °. This example 
demonstrates that the definition of resonance is somewhat ambiguous. The 
strongest resonant enhancement does not necessarily coincide with the 
conventional phase resonance operation point but can also occur at the operation 
point of smallest cavity loss (or somewhere in between). In special cases a single 
resonance can present itself by two peaks: one peak at phase resonance and one 
peak at the cavity loss minimum. 

In fig. 25 the cavity length is changed from 1 to 2 wavelengths (while the dipole is 
kept at a distance half a wavelength away from one mirror). Both for the "lambda- 
cavity" and the "2 lambda"-cavity the total internal field amplitude is shown for 
the central wavelength as a function of angle and for normal incidence as a 
function of wavelength. 
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Fig. 25: Comparison of  "lambda"- and "2 lambda"-cavity in terms o f  internal 
angular field distribution and normal emission spectrum. Note that the source is 

not centered in the cavity in the 2-1ambda case. 

These figures show that the number of resonances increases when the cavity 
length is increased. Very roughly speaking the radiated power of the dipole is 
equally distributed over all resonances. Since in this case only one resonance falls 
within the extraction cone, the extraction efficiency will drop as the cavity length 
increases. This explains why a micro-cavity LED needs to have a small cavity 
length. The figure also shows that the spectrum of normal emission (O= 0) 
narrows as the cavity length is increased. This may be advantageous in an 
application requiring a narrow spectrum but when the filter action of the cavity is 
narrower than the natural linewidth of the dipole emission, the overall extraction 
efficiency deteriorates. 

An aspect not discussed so far is the impact of the cavity on the total power 
emitted by the dipole (for a given dipole strength). For a given density of dipoles 
per unit volume, a change in the total emitted power can, in case a dipole 
represents radiative electron-hole recombination, only be associated with a change 
in recombination rate and hence in lifetime. One can write 

1 

r__L_ = power emitted by dipole in cavity (70) 
l power emitted by dipole in uniform space 

~o 

where r and ro are the lifetimes with and without cavity. The change of carrier 
lifetime due to the presence of a cavity is known as the Purcell-factor. 

The impact of a planar cavity on the change of spontaneous decay rate has been 
studied in detail ([Brorson, 1990], [Yokohama, 1992], [Bj6rk, 1994] and [Abram, 
19981). In the case of a cavity with perfect (100% reflecting) mirrors an analytical 
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expression for the Purcell-factor has been derived in [Abram, 1998] for the case of 
a horizontal dipole in the middle of the cavity. The results depend on the phase of 
the mirror reflection coefficient. For r=+l there are [mc]+l modes but only [mff2 
+1] are excited. The others are not excited because the dipole is located at a zero 
of the mode profile. One finds: 

4[~]3 +6[~-]2 + (? ]  
-+ 

1/T. o 4m o 2m3¢ 
(71) 

For r=-1 there are [me] modes, [(mc + 1)/2] of which are excited and one finds: 

1/-c_ 6[~-]  + 4Imc~1]s-[mc;~ 1 ] 
1/'c o 4m o 2m3o 

(72) 

The terms in 1/mc in these expressions correspond to TE-waves, whereas the 
terms in l/m¢ 3 correspond to TM-waves. 
The two expressions are shown in fig. 26 as a function of me. One can see that 
apart from the singular 1/mc behaviour for small mc in the r=+l case, the 
maximum Purcell-factor is 3 and is obtained in a half-wavelength thick cavity, 
with r=-I (perfect metallic mirrors). For thick cavities the Purcell-factor 
converges to 1. In other words, thick cavities with many modes have a similar 
impact on the dipole as uniform space with a continuum of modes. 
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Fig. 26. A,Iodification o f  spontaneous emission. 

Although one would expect intuitively that the cavities with 100% reflecting 
mirrors present the strongest decay rate enhancement, it has been shown in 
[Abram 98] that this is not the case. A cavity with two Au-mirrors can give rise to 
a Purcell-factor of 4.4 for mc = 0.7. This behaviour is explained by the phase shift 
at the Au-interface which leads to a situation in between the r=+ 1 case (infinite 
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Purcell-factor for me=0) and the r=-I case (Purcell-factor = 3 for mc = 1). A special 
feature of cavities with realistic metallic mirrors is also that part of the evanescent 
fields generated by the dipole can be coupled to and dissipated by the metal, 
thereby giving a contribution to the decay rate. The extent of this mechanism 
obviously depends on the distance between the dipole and the metal. 
In a micro-cavity bound by DBR-mirrors the Purcell factor is generally close to 1 
(between 0.8 and 1.2 typically) except if the m~-value is close to 0. The reason for 
this is dual. First of all, the DBR is leaky over a wide angular range which means 
that in this range the situation is little different from free space. Secondly, the 
penetration depth of the DBR leads to an enlarged effective cavity thickness and 
hence an enlarged effective cavity order defined as: 

In l -  [ d + Zl,eff,O +___ L2,eff,O 1 (73) 

whereby L ~,eg, o and L 2.eg, o are the angular penetration depths of both mirrors (with 
nr~f chosen to be equal to n), while d and n are the thickness and the refractive 
index of the layer in between both DBR-mirrors. 

In 3-dimensional cavities the Purcell-factor can be substantially larger than in 
planar cavities. In [G6rard 98] Purcell-factors up to 5 have been demonstrated in 
optically pumped micropillars. 

8. Guided modes 
In the discussion so far, the field produced by the dipole was decomposed into a 
continuum of plane waves, with kx and ky as independent variables. The 
resonances with evanescent fields outside the cavity were called "guided modes". 
The examples shown in the figures demonstrate thaL as a function of k!i or 8. a 
discrete number of resonant peaks -"guided modes"- appeared. For each "guided 
mode" the cavity enhancement appears over a finite range of kll or t9 and becomes 
singular in the lossless case. The finite ~-range of enhancement may be surprising 
for anybody familiar with waveguide theory. It is well established indeed that the 
guided field can be represented as a sum of guided modes, each of which has a 
sharply defined propagation constant (corresponding to kH), rather than a finite 
range of propagation constants. The origin of this apparent paradox lies in the fact 
that the concept of a "guided mode" derived from a resonant plane wave is very 
much related to, but not rigorously identical to the classical concept of a guided 
mode. 
The total field propagating in a waveguide structure - for example the field due to 
a radiating dipole - can be decomposed into base functions of the (sourceless) 
structure in two distinct ways. This is illustrated in fig. 27 where the same 
waveguide structure is shown with two different reference planes for 
decomposition. The (x,y,z) coordinate system has deliberately been chosen in a 
different way, such that the (x,y)- (or (x',y~-plane) is always the plane of 
decomposition. In the plane wave approach of fig. 27a the base functions are 
given by exp(-j(k~c + kyy)) and are not influenced by the waveguide structure. In 
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each layer they represent a plane wave with a different direction. Both E and IJ 
fields can be expressed in terms of these base functions. 

I 
! 

! 

! 
X Z' 

Y y 
(a) (Io) 

Fig. 27." Two methods to decompose a propagatingfield in a planar structure. The 
dashed line is the decomposition plane. 

In the normal (waveguide) mode approach of fig. 27b the base functions are the 
waveguide modes. Such a waveguide mode is a solution of Maxwell's equations 
for this structure (without sources) of the form: 

E(x', y' ,z')= exp(+ jk~,z')ek, ' (x', y') 
t I l . . ~  • l H(x , y ,z ) :  exp(_ jk~,z )he,, (x', y' ) (74) 

In other words a waveguide mode is a solution such that its (x',y')-dependence 
does not change upon propagation in the z'-direction. The propagation constant kz, 
is unique for each mode (apart from degeneracy effects). In planar structures the 
modes subdivide into two categories: the TE-waveguide modes with field 
components Ey,, Hx, and H,, and the TM-modes with field components Hy, Ex, and 
E,,. These names are consistent with the TEffM decomposition in the plane wave 
approach. It has been shown (see for example [VassaUo, 1991]) that the normal 
modes can be subdivided in a continuous set of radiation modes (either 
propagating or evanescent in the z'-direction) and a truly discrete set of guided 
modes (whereby a guided mode is defined as a normal mode which decays to zero 
for large ~cq or Lv'l). 
The combination of the radiation modes and the guided modes forms a complete 
set. Furthermore the normal modes satisfy, the general orthogonality relation: 

e~., x ,y x ' ,y uz,dx'dy---0 (75) 

for kz,.~ :x k,, 2 

For degenerate modes an orthogonalisation procedure has to be applied before one 
can write this relation. This orthogonalit3" relation is always valid, irrespective of 
whether the structure is lossless or not. In lossless structures one can also write: 

f~ (ek..,., (x', y')x h'~z,, (x', y'))u~,dx' dy'=O (76) 

for kz, 1 ~ k:,: 
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This latter relation is interesting because it can be seen as a power orthogonality 
relation: the total propagating power is the sum of the powers carried by the (non- 
evanescent) modes. Unfortunately such a statement can only be made in lossless 
structures (or in uniform lossy structures). 
We return to the example shown in fig. 25 where a 1 wavelength thick waveguide 
with a core index of 3.5 and a cladding index of 1 was considered. The lowest 
order TE-mode for this waveguide is shown in fig. 28. The effective refractive 
index (kz/ko) for this mode is 3.248. Within the core of the waveguide this 
effective index corresponds to plane waves with elevation 0=arcsin ( ne f f / ncore )  = 

:~ 68.1 °. As can be seen this angle corresponds well to the angle of the "guided 
mode" - resonance in fig. 25. 

n=3.5  

. .  1 /f~1E, 

Fig. 28: Ey-component of TE-field for the waveguide shown in fig. 25. 

At this point the basic difference between the plane wave decomposition in the 
(x,y)-plane and the normal mode decomposition in the (x',y')-plane can be 
understood. A dipole in a waveguide will excite guided and radiating normal 
modes propagating away from the dipole. This situation is depicted in fig. 29 
(where only a single guided mode excitation is shown). 
In the plane wave approach the dipole excites plane waves that span the entire 
(x,.v)-plane, as shown in fig. 29(b) (where 4 plane waves with the same elevation 
as those in fig. 29(a) are shown). 
Clearly the two situations are different and the only way to make them consistent 
with each other is to take a directionally broadened distribution of the plane waves 
of fig. 29(b) in the (k~,ky) domain, with complex coefficients such that the linear 
combination reproduces the different directions in the right and left half spaces 
around the dipole as in fig. 29(a). This is illustrated in fig. 29(c) where (only) two 
such plane waves of this distribution are drawn. 

To understand the equivalence we write down the entire field solution in the 
normal mode decomposition 

T5 (x', y', z')= E q2~, (~)e-I~'i"'! +IqjG,(x')e-J~:"!Z'!dkz, (77) 
i 

For ease of notation the solution was written down in a scalar way and 
incorporates only the wave components with k-vector in the (x',z) plane (9~-0). To 
these should be added all the components with other azimuthal values so as to 
arrive at a cylindrical solution. 
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*'-.. *-...*-... *-. . .  7 7 . . . - *  7 

(a) 

*>4' Y.~ ~ %4'_~*'~ ~' ~ *'~4' ~4'  

(b) 

(c) 

Fig. 29: (a) Guided normal mode decomposition of a dipole(l guided mode 
shown) (b) The four plane waves that one would naively map onto the above field. 
Note however that each of the plane waves has the same direction throughout the 
horizontal plane (c) Solutmn of the "discrepancy" between figure (a) and (b): the 

plane waves of figure (b) are directionally broadened with coefficients as 
described in equation (81) 

The first term in equation (77) represents the discrete guided modes, while the 
second represents the radiation modes, both propagating and evanescent (in the z'- 
direction). Equation (77) can be rewritten as 

u&(x', y',z')= Z ~gP, (x')~ -j~'~'H(z')+e+j~'r H(- z')) 

+ i gt#:, (x,~e_ ieS H(z,)+ e+ jtz, Z,H(_ z,)) (78) 

whereby H(z) is the Heaviside or step function (H(z')=O for z'<0 and H(z') = 1 for 
z~0). 
The main point is that the distribution of plane waves that allows to reconstruct 
this field is just the Fourier Transform of equation (78) with respect to z' (and y'). 
Doing this for one discrete guided mode (and assuming a lossless structure with 
real fl,) leads to: 

W~(x',ky,kz.)=u/~,(x')~(kz,-~J,). HF(kz,)+5(kz, +~,).(-HY(-kz,))] (79) 

in which/4e(kz,) is the Fourier Transform of the Heaviside function, given by 

H i (80) 
k z , 

This formula represents the useful link between the diverging aspect of the 
discrete mode approach of fig.29(a) and the uniform plane wave approach of fig. 
29(b). Combination of equations (79) and (80) finally leads to: 

qJs(x"ky"kz')=~'(x'(rcS(kz'-~) kz, J-~, 7tS(kz'+13') kz'J+~il (81) 

This equation clarifies that a single guided mode excitation by a dipole is 
represented by a broadened set of plane waves. The broadening function//e(kD 
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should then be related to the Airy function around the resonance peak (or rather to 
its special form for rlr2=l, described in equation 26). Both functions are not 
identical because equation (81) contains only a single guided mode while the Airy 
function contains all contributions. All other normal modes, and in particular the 
evanescent normal modes, do also contribute to the plane wave amplitude for all 
k.J-values. Nevertheless near a resonance peak the contribution of the guided 
mode should be dominant. The Airy function does (in the special lossless case) 
indeed have a 1/j(k~-fl,) dependence near the resonance peak together with a delta- 
function at kt=13i, as is the case with the//e(k,,) -function. 
In summary: the Airy function - which represents the plane wave decomposition 
of the field generated by a point - like source - has non-discrete resonance peaks 
so as to represent the excitation of discrete guided modes that propagate away 
from the point source (whereas the plane waves do only partly propagate away 
from the point source). 

In a case where the structure is lossy, the guided modes remain discrete, but they 
have a complex propagation constant. Hence the Heaviside function needs to be 
multiplied with an exponentially decaying function. This leads to a further 
broadening of the peaks in the plane wave decomposition (and disappearance of 
the singularities), consistent with the behaviour of the Airy, function in this case. 
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1 I n t r o d u c t i o n  

The optical response of semiconductors has been the subject of intense ex- 
perimental and theoretical investigations for several decades. Consequently, 
many basic features are well understood by now, and some properties are even 
exploited in comercial devices such as light emitting diodes, semiconductor 
laser, optical switches, etc. To some degree it is the huge success of these 
devices, as well as the need of even faster operational speed and higher levels 
of on- and off-chip integration that drives the development of smaller and 
smaller semiconductor structures. A recent example with enormous applica- 
tion potential are the so-called VCSEL (vertical cavity surface emitting laser) 
structures, where semiconductor quantum wells between Bragg mirrors op- 
erate as highly efficient lasers with excellent performance characteristics and 
truely miniature geometry in the range of only a few #m (10-6m). 

Interestingly enough, the same heterostructures, i.e. quantum wells be- 
tween high reflectivity mirrors, show very exciting light-matter coupling ef- 
fects at low excitation conditions if the exciton resonance is in the spectral 
vicinity of the cavity resonance. The interaction leads to so-called "normal 
mode coupling" (NMC) which manifests itself in these microcavity systems, 
e.g. as anticrossing in the hybride exciton and light dispersion resulting in 
a double peak structure in transmission, reflection and luminescence. The 
basic physics behind these and related effects is one of the main topics of this 
summer school on "QED Phonomena and Applications of Microcavities and 
Photonic Crystals". 

Recent research has shown that even the linear optical properties of real 
microcavity structures are not at all trivial, partly due to the unavoidable 
presence of structural disorder, which is always present at least on an atomic 
scale at the interfaces between quantum wells and the surrounding barrier 
material. Furthermore, unexpected optical nonlinearities have been observed, 
which gave rise to speculations about quantum-statistical condensation ef- 
fects in such heterostruture systems. These and related experimental obser- 
vations clearly demonstrate the need for a basic understanding of the physical 
mechanisms, governing the optical microcavity response. 

These lecture notes attempt to summarize many of the important aspects 
needed to understand the elementary microcavity physics. After an introduc- 
tion into some of the fundamental concepts, such as electronic band strutures, 
electron-hole excitations, and excitons, a microscopic theory is outlined that 
allows us to analyze the linear and nonlinear optical response of semiconduc- 
tors under quasi-stationary and dynamic excitation conditions. These results 
serve as input for a self-consistent solution of Maxwell's wave equation for 
the spatially inhomogeneous microcavity heterostructure. 

Most of the material summarized in these lecture notes can be found in 
textbooks where it is, however, often distributed over many chapters and/or 
combined with other, more general results. In order to provide a brief but 
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fairly comprehensive introduction, the basic material is collected here in a 
condensed form. For this purpose I have used material from the textbooks 
by W. Chow and S.W. Koch, Semiconductor Laser Fundamentals (Springer 
Verlag 1998) and H. Haug and S.W. Koch, Quantum Theory of the Optical 
and Electronic Properties of Semiconductors, (World ScientiJ~c Publ., 3rd ed. 
lg9~), where many more details and results can be found. The application 
of the semiconductor many body theory to microcavity systems is based on 
the recent papers by Jahnke, Kira, Koch, Z. Physik B 104, 559 (1997) and 
Kira et al. (submitted). 

It is my pleasure to thank F. Jahnke and M. Kira for ongoing theory 
collaborations and H. Gibbs, G. Khitrova and coworkers in Tucson/Arizona 
for theory/experiment collaborations. This work is supported by the Deutsche 
Forschungsgemeinschaft, partially through the Leibniz prize. 
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2 B a s i c  P h y s i c s  o f  S e m i c o n d u c t o r  E l e c t r o n s  

This chapter summarizes some important concepts needed to analyze the 
optical properties of semiconductor systems. The first section discusses the 
problem of a semiconductor electron in the periodic lattice potential of the 
ions. The resulting band structure, i.e. the occurrence of regions of allowed 
energy states and energetically forbidden regions is illustrated in Sec. 2.2 for 
the example of a simple tight-binding model. Sec. 2.3 summarizes general 
bandstructure results and Sec. 2.4 dicusses the basic quantum confinement 
effects occurring for electrons in an effectively two-dimensional quantum-well 
structure. Sec. 2.5 summarizes the fundamental rules of the particle number 
representation or second quantization approach which is extremely useful 
when one is dealing with systems where the occupation probabilities of the 
different quantum states axe a dynamic variable. 

2.1 Elementary Bandstructure Aspects 

In a simple picture of a semiconductor, an electronic state is identified by its 
momentum, k, and z-component of spin, Sz (or, more generally by its total 
angular momentum quantum number). As our model solid we take a perfect 
crystal, where the ions are arranged in a periodic lattice. We assume that 
the influence of this periodic arrangement of ions on a given crystal electron 
can be expressed in the form of an effective periodic lattice potential Vo (r) 
which contains the mean field of the nuclei and all the other electrons. We are 
interested in the wavefunctions and allowed energy states of a single crystal 
electron, all many-electron effects will be discussed later. 

Microscopically the lattice potential Vo(r) results from the superposition 
of the Coulomb potentials of the nuclei and the inner electrons of the ions. 
However, we never need the explicit form of Vo (r), we only utilize some general 
features, such as the symmetry and periodicity properties of the potential 
which reflect the structure of the crystal lattice. 

The periodicity of the effective lattice potential is expressed by the trans- 
lational symmetry: 

v0(r)  = Vo(r + 

where Rn is a lattice vector, i.e., a vector which connects two identical sites in 
an infinite lattice, which are n lattice cells apart. To make use of the lattice 
periodicity, we introduce an operator Tn which when acting on a function 
f(r)  adds a lattice vector 1~  to the argument of the function. Applying Tn 
to the wavefunction ~ of an electron in the periodic potential Vo(r) yields 

= + R . )  = , (2 )  

where tn is a phase factor, because the electron probability distributions 
[~(r)l 2 and [~(r + tt,,)[ 2 have to be identical. Since the Hamilton operator 
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p2 
H = + Vo(r) (3) 

2mo 

has the full lattice symmetry, the commutator  of H and 7", vanishes: 

[H, Tn] = H T n  - T , ,H  = 0 . (4) 

Under this condition a complete set of functions exists which are eigenfunc- 
tions to H and Tn: 

H~x(k ,  r) = E~k~x(k, r) (5) 

and Eq (2) have to be satisfied simultaneously. Here we identified k as the 
quantum number associated with the translation operator and 

t n  = e i ( k 'F t"+2~rN)  , 

where 27r is an allowed additional factor because 

(6) 

e i2ÈN = 1, for N = integer . (7) 

Considerations along the lines of Eqs. (1) - (7) led F. Bloch to formulate 
the following theorem, that  is now known as the Bloch theorem: 

eik'R~P~(k,r) = k~(k , r  + Rn) • 

To satisfy relation (8), we make the ansatz 

(8) 

eik.r 
k~(k, r) = L-T~u~(k, r) , (9) 

where L 3 is the volume of the crystal. Eq. (9) defines the Bloch wave]unction. 
We see that  Eq. (9) fulfills the Bloch theorem (8) only, if the Bloch function 
u~ is periodic in real space 

ux(k , r )  = u x ( k , r  + 1~ )  . (10) 

The function multiplying the lattice periodic function ux(k , r )  in Eq. (9) is 
often denoted as envelope ]unction. In the present case of a three-dimensional 
bulk material this envelope function is simply a plane wave, but  it is signifi- 
cantly modified in semiconductor structures with a lower effective dimension- 
ality, such as quantum wells, wires or dots (see Sec. 2-4 for more details). 
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2.2 T i g h t - B i n d i n g  A p p r o x i m a t i o n  

To get some basic understanding for the occurrence of bandstructures,  we 
discuss in this section a simple approximation for calculating the allowed 
energies and eigenfunctions of an electron in the crystal lattice. For this 
purpose we t reat  the so-called tight-binding approximation where we start  
from the electron wave-functions of the isolated atoms which form the crystal. 
We assume that  the electrons stay close to the atomic sites and that  the 
electronic wavefunctions centered around neighboring sites have little overlap. 
Consequently there is almost no overlap between wavefunctions for electrons 
that  are separated by two or more atoms (next-nearest neighbors, next-next 
nearest neighbors, etc). The relevant overlap integrals decrease rapidly with 
increasing distance between the atoms at site m and l, so that  only a few 
terms have to be taken into account. 

The SchrSdinger equation for a single atom located at the lattice point l 
is 

H0¢x(r  - Rt)  = cxCx(r - Rl)  

with the Hamiltonian 

(11) 

h2~7 2 
H0 - - -  + V 0 ( r -  R t )  , ( 1 2 )  

2m0 

where Vo(r - Rt)  is the potential of the l-th ion. The full problem of the 
periodic solid contains the sum of all individual ionic potentials, 

h2V2 ) 
- 2 m - - - - ~ + E V o ( r - R l ) - E ~ ( k )  ¢ ~ ( k , r ) = 0  . (13) 

1 

To solve Eq. (13) we make the ansatz 

eik 'Rn 

¢~(k , r )  = E L--L-575-/2 ¢~(r - P~)  " (14) 

This tight-binding wavefunction obviously satisfies the Bloch theorem, Eq. (8). 
In order to compute the energy we have to evaluate 

E~ (k) = f dar¢~ (k, r )H¢~  (k, r) _ _ N 
f d3r¢~(k,r)¢~(k,r) D ' 

where the numerator can be written as 

(15) 

1 / 
N = ~ ~ e i k ' ( R " - R ~ )  d3r¢~(r - R m ) H ¢ ~ ( r  - R n )  (16) 

and the denominator is 
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1 / 
D -- ~-~ E e i k ' ( ~ - R " )  d3r¢~(r - Rm)¢~(r  - 1 ~ )  . (17) 

Since we assume strongly localized electrons, the integrals decrease rapidly 
with increasing distance between sites n and m. The leading contribution is 
n -- m, then n = m 4- 1, etc. In our final result we only want to keep the 
leading order of the complete expression (15). Therefore it is sufficient to 
approximate in the denominator: 

d3r¢*x(r - "~ 6,,m , Rm)¢x( r  1 ~ )  (18) 

so that  

6.  m 1 N 

n ~ m  

We denote the integral in the numerator as 

(19) 

/ ( h 2 ~ 7 2 + E V ° ( r - R t ) ) d P ~ ( r - I ~ )  " 
I = d3r~b~(r - Rm) 2mo l 

It can be approximated as follows 

(20) 

6.+1,,~ ~ [ a3r¢l(r + n~±l)y0(r - R~)¢~(~ + 1~) + ... + 

l J 

-= 6,,me~ + 6,+1,mB~ + ... , (21) 

' is the renormalized (shifted) atomic energy level and Bx is the where ex 
overlap integral. Energy shift and overlap integral for the states A usually 
have to be determined numerically by evaluating the integral expressions in 
Eq. (21). The resulting numerical values and signs depend on details of the 
functions ¢~ and the potential Vo. 

If we neglect the contributions of the next nearest neighbors in Eq. (21), 
we can write the total numerator as 

N ~_ _ ~1 E eik.(R _R=)(a,~,me ~ + 6,±t,mBx) 
n ~ m  

Inserting Eqs. (19) and (22) into Eq. (15) we obtain 

(22) 
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, B), Z 5r"'n±leik'(m'--~") (23) E~ (k) = e~ + -~- 

To analyze this result and to gain some insight into the formation of 
energy bands, we now restrict the discussion to the case of an ideal cubic 
lattice with lattice vector a, so that  

R n ± I  = P~n :k a . ( 2 4 )  

Using Eq. (24) to evaluate the m summation in Eq. (23) we see that  the 
exponentials combine as 

e ik'a  4- e - i k ' a  - -  2 c o s ( k  • a )  ( 2 5 )  

so that  the n-summation simply yields a factor N and the final result for the 
energy is 

Ex(k)  = e ~ + 2B~ cos(k- a) . (26) 

Eq. (26) describes the tight-binding cosine bands. Schematically two such 
bands are shown in Fig. 2.1, one for B~ > 0 (lower band) and one for B~ < 0 
(upper band). 

k 

Fig. 2.1. Schematic drawing of the energy dispersion resulting from Eq. (26) for 
the cases of Bx.) (lower band) and Bx < 0 (upper band). The effective mass ap- 
proximations, Eq. (27), axe inserted as dashed lines. (From Haug and Koch 1994). 
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2.3 General Bandstructure Aspects 

We can summarize some general bandstructure aspects in the following qual- 
itative statements: 

(i) The discrete atomic energy levels become quasi-continuous energy re- 
gions, called energy bands, with a certain band width. 

(ii) There may be energy gaps between different bands. 
(iii) Depending on the corresponding atomic functions, the bands Ex (k) may 

have positive or negative curvature around the band extrema. 
(iv) In the vicinity of the band extrema one can often make a parabolic ap- 

proximation 

h2k 2 h 2 

~Xk ~-- ex,o + - - ,  m~,,ell -- 0 % ~  Ik=o (27) 
2rex,el i  Ok 2- 

In the regimes where the parabolic approximation is valid, the electrons 
can be considered quasi-free electrons but with an effective mass reef f ,  which 
may be positive or negative, as indicated in Fig. 2.1. A large value of the 
overlap integral Bx results in a wide band and correspondingly small effective 

mass m)~,ef f . 

(V) Without  considering correlation effects one can often assume that  the 
states in the bands are filled according to the Pauli principle, beginning 
with the lowest states. The last completely filled band is called valence 

band. The next higher band is the conduction band. 

There are three basic cases realized in nature: 

(i) The conduction band is empty and separated by a large bandgap from 
the valence band. This defines an insulator. The electrons cannot be 
accelerated in an electric field since no empty states with slightly different 
E ( k )  are available. Therefore we have no electrical conductivity. 

(ii) An insulator with a relatively small bandgap is called a semiconductor. 

The definition of small bandgap is somewhat arbitrary, but  a good oper- 
ational definition is to say that  the bandgap should be on the order of or 
less than an optical photon energy. In semiconductors electrons can be 
moved relatively easily from the valence band into the conduction band, 
e.g., by absorption of visible or infrared light. 

(iii) If the conduction band is partly filled, we have a finite electrical conduc- 
tivity and hence a metal. 

Realistic bandstructure calculations are based on sophisticated schemes, 
often using self-consistent approximations for the ionic potentials and/or  local 
density approximations for the electrons. As an example for the result of such 
a calculation we show in Fig. 2.2 the electronic bandstructure for GaAs.  This 
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Fig. 2.2. GaAs bandstructure. The x axis shows the k values in different directions 
of the first Brillouin zone, where F, X and L are high symmetry points. The hatched 
region is the region of interest for most optical transitions. (From Chow and Koch 
1998) 

material  is a direct bandgap semiconductor, for which the conduction-band 
energy minimum and the valence-band energy maximum both  occur at  k = 0. 
I f  the band ext rema are at  different momentum values, the semiconductor has 
an indirect bandgap.  Most I I I -V and I I -VI  compounds (the numerals refer to 
columns in the Periodic Table) are direct bandgap materials,  whereas Si and 
Ge are examples of indirect bandgap materials.  

Fortunately, for optical transitions with frequencies in the visible or near 
infrared, it is often not necessary to deal with the complete semiconductor 
bandstructure.  First of all, optical transitions are direct transitions, i.e., the 
momenta  of the initial and final electronic states are essentially equal because 
of the smallness of the photon momentum 

hK = hwnb (28) 
c 

Here hw is the photon energy, K is the magnitude of the photon wavevector, 
nb is the background refractive index of the semiconductor, and c is the 
speed of light. For GaAs, ~ ~ 1.4eV and nb ~ 3.6, so that  K ~ 2.54 • 
lOT~m, which is negligible on the scale ( ~  ~ lOl°/m) of the electronic 
band structure. Therefore, we only need to consider a small region of the 
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band structure around the bandgap minimum, where optical transitions are 
most likely to occur. If the region of interest is sufficiently small, it is often 
reasonable to approximate the energy bands in that  region using the parabolic 
approximation, Eq. (27). However, deviations from this simple approximation 
are often important  for quantitative theory/experiment  comparisons. 

Another important  simplifying factor is that  all energetically low bands 
which are completely filled with electrons do not contribute directly to the 
optical transitions in the frequency range of interest. Hence, the electronic 
band structure that  we have to consider usually involves only a very small 
portion of the entire band structure indicated by the hatched area in Fig. 2.2. 

For many model calculations we can restrict our band model to one (or 
at most a few) valence bands and the conduction band, including only k- 
values around k = 0 (F  point). In this parameter region we can often use the 
effective-mass approximation, Eq. (27), in the form 

h2k 2 
cek = 2me + ego , (29) 

h2k 2 
e v k -  2my (30) 

Here me and my are the effective masses of the electrons in the conduction 
and valence bands, respectively, and ego is the bandgap energy in the absence 
of excited electrons. 

Light absorption in a semiconductor promotes an electron out of the full 
valence band into the empty conduction band, leaving behind a missing elec- 
tron in the valence band. For simplicity, we refer to the conduction electrons 
simply as electrons and the missing valence-band electrons as holes. The con- 
duction band electron has the charge ( - e ) ,  and the hole, i.e. the missing 
electron can be characterized by the charge - ( - e )  = +e, i.e. opposite that  
of the electron. 

If we ignore the photon momentum in an optical transition, the transition 
energy at the carrier momentum k is given by 

hWk = Cek + Chk + ego , (31) 

where the electron and hole energies are 

h2k2 
e e k  - -  

2me 
h2k2 

Chk -- , (32) 
2mh 

and me and mh are the effective masses of the electron and hole, respectively. 
The electron mass me equals me. In this electron-hole description of a semi- 
conductor, the energy of the hole is the energy of the completely filled valence 
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band minus the energy of the valence band with a vacant electronic state. 
Hence, an increase in the hole momentum leads to an increase in the hole 
energy. Therefore, whereas the effective electron mass in the valence band is 
negative, the effective hole mass is positive. 

The resonance energies for the optical transitions can be changed by the 
Coulomb interaction, which for low densities leads to the creation of excitons 
(see Sec. 3.4 for details). Here the Coulomb attraction can bind an excited 
electron and hole pair into an exciton, which is a hydrogen-like "atom" with 
a finite lifetime. The exciton lives are terminated through electron-hole re- 
combination, which transfers the exciton energy to light (radiative recombi- 
nation), or to the lattice, impurities, etc. (nonradiative recombination). By 
replacing the proton mass by the reduced electron-hole mass, we can use the 
Bohr hydrogen model to describe an exciton. The radius of the lowest exciton 
state is given by the exciton Bohr radius 

h2£b 
ao - , (33) 

e2mr 

and the energy of the lowest state is given by the exciton Rydberg energy 

h 2 
g R -  2m~a 2 , (34) 

where eb is the background dielectric constant and mr is the reduced electron- 
hole mass defined by 

1 1 1 

mr rr~e mh 

In GaAs, ao = 124/~ compared to 0.5/k in the H atom, and ~R = 4.2meV, 
which is tiny compared with 13.6eV for the H atom and small compared to 
room temperature  thermal energy kBT ~ 25meV. Whether  excitons are im- 
por tant  in the description of semiconductor behavior depends on ao compared 
to the mean distance between electron-hole pairs and the screening length, 
and cR compared to k s T .  The screening length is a measure of the effec- 
tiveness of the screening of the Coulomb interaction between two carriers by 
other carriers. As the carrier density increases (due to an injection current 
or optical absorption), the Coulomb potential becomes increasingly screened, 
and for sufficiently high densities the excitons are completely ionized. Sim- 
ilarly, for increasing density the mean particle separation decreases, leading 
to increasing overlap of the electrons and holes in the excitons. Since elec- 
trons and holes are Fermions, each quantum state cannot be occupied by 
more than one particle (Pauli exclusion principle). Hence, different electrons 
(holes) compete for the available phase space. Phase-space filling effectively 
reduces the electron-hole attraction, quite similar to screening. 
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2.4 Quantum Confinement Effects 

GaAs does not occur in nature and as such can be considered a "designer ma- 
terial". Modern crystal growth techniques make it possible to determine not 
only the composition of semiconductors with remarkable precision, but one 
can also determine their shape virtually on an atomic scale. In particular, it 
is possible to fabricate microstructures so small that  their electronic and op- 
tical properties deviate substantially from those of bulk materials. The  onset 
of pronounced quantum confinement effects occurs when one or more dimen- 
sions of a structure become comparable to the characteristic length scale of 
the elementary excitations. Quantum confinement may be in one spatial di- 
mension, as in quantum wells, in two spatial dimensions as in quantum wires, 
or in all three spatial dimensions as in quantum dots. The confinement modi- 
fies the allowed energy states of the crystal electrons and changes the density 
of states. In this section, we introduce the basic properties of quantum-well 
structures. For tile finer but still important  modifications to the quantum- 
well bandstructure,  we refer to the literature (Bastard 1988; Chow and Koch 
1998). 

A basic understanding of quantum-well confinement effects is obtained 
most easily by considering ideal quantum confinement conditions, for which 
the elementary excitations are completely confined inside the microstructure 
and the electronic wavefunctions vanish beyond the surfaces. For this ideal- 
ized situation, we can write the confinement potential as 

I 0 z [< Lc/2 Go~(Z) oo z l> L~/2 J " (35) 

In the xy plane there is no quantum confinement and the carriers can move 
freely. The electron eigenfunction (actually the envelope of the crystal elec- 
tron eigenfunction) can be separated as 

Cn,k± (r) =¢k± (r±)~n(z) , (36) 

where the z and transverse components r±  (x, y) obey the SchrSdinger equa- 
tions 

h 2 d 2 
[ 2mz dz ~ + Vcon(Z)]¢,~(z) = E~n( z )  , (37) 

and 

h 2 
-- 2 m l  V2¢k± ( r±)  : E k ±  Ck.L ( r l )  , (38) 

respectively. For simplicity, we assume that  the bulk-material bandstructure 
can be described by parabolic energy bands that  are characterized by the 
effective masses mz and ru±, which are equal for the conduction bands. How- 
ever, for GaAs like materials they differ for the valence bands, which leads 
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to the interesting property of mass reversal (see e.g. Bastard 1988). Equation 
(38) describes a two dimensional free particle (i.e., no external potential and 
not interacting with other particles) with eigenfunctions 

and eigenvalue 

1 e:kik.r± Ck~ (r±) = (39) 

h2k  (40) Ek~ = 2m± 

Because of the infinite confinement potential, we have the boundary condi- 
tions 

(41) 

which lead to the even and odd solutions of Eq. (37) 

¢.(z) = ~L~ cos(k.z) 

~n(z) = ~ f ~  sin(kuz) 

,n  even , (42) 

, n odd , (43) 

where the wave numbers kn are given by 

nTr 
k . = - ~  , 

and the bound state energies E,~ are 

2 2 h k .  ~r2h2n 2 
En = 2m~ - "2mzL 2 

(44) 

(45) 

Adding the energies of the motion in the xy plane and in the z-direction, 
we find the total energy of the electron subjected to one-dimensional quantum 
confinement to be 

E - 7r2h2n2 q- h2k----~2~ (46) 
2mzL2c 2m± 

where n = 1, 2, 3, ..., indicating a succession of energy subbands, i.e., energy 
parabola h2k~ /2m± separated by 7r2h2/2m~L2 c. The different subbands are 
labeled by the quantum numbers n. Figure 2.3 depicts the energy eigenstates. 

Realistically, we can only fabricate finite confinement potentials, so that  

0 ]z l< Lc/2"~ (47) 
Vco,(Z) = V~ I z I> L~/2 J 

The analysis for this ease follows closely the treatment of the infinite poten- 
tial, with the SchrSdinger equation for the x - y motion being unchanged. 
However, the solutions in the z-direction can no longer be determined ana- 
lytically. 
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Fig. 2.3. The first three energy eigenstates of the one dimensional confinement 
potential, Eq. (35). (From Chow and Koch 1998) 

2.5 S e c o n d  Q u a n t i z a t i o n  

This section briefly summarizes the main rules of the second quantized (or 
Fock) representation that  is very useful to compute the electronic and optical 
properties of the semiconductor medium. This method is well adapted to t reat  
systems of indistinguishable particles with varying particle number. 

We introduce the creation and annihilation operators for electrons in a 
state which we specify by the band index )~, the momentum k, and the z- 
component of the spin, sz. The annihilation operator is then a~ksz (t). Its 
Hermitean adjoint a t c rea tes  an electron in the same state. )~ks~ 

For the sake of clarity, we write the operators with all their indices appear- 
ing explicitly. In the later chapters we usually incorporate the spin variable 
into k for typographical simplicity. In that  case, the subscript k represents 
the three-dimensional momentum vector k, and two possible spin directions 
sz = ±3"1 The summation over k then involves summations over kz, ky, kz 
and Sz. 

Since the crystal electrons are Fermions, the creation and annihilation op- 
erators obey a n t i c o m m u t a t i o n  relations. These relations are a consequence of 
the Pauli exclusion principle, which states that  at most one Fermion can oc- 
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cupy any given state. The anticommutation relations for the electron creation 
and annihilation operators are 

t ~ (48) 

a , , , = ~,~,~k,WS,=,, , a,kks~, )~ k s .  + 

where for two operators, A and B, the anticommutator is defined by 

[A, B]+ = A B  + B A  . 

The combination a txksa ) , k , ,  is the number operator for an electron in 

band A with momentum k and sz.  The eigenstates for  a?~ks, a~ks= a r e  [0)~k,.) 
and IIAk,=), which are the states containing no electron and one electron, 
respectively. These eigenstates when operated on by the creation, annihilation 
and number operators give 

- a I [ l x k , = )  : 0 agks~ IO)~ks~) - gks. 

a,kks~ [lgks~) : [O,Xks=) 

t a IOj, k,=) 0 a~ks~ Aks. 

? a Ilxks=) Ilxk,=) (50) aXks .  Aks: : , 

where the first equation expresses the fact that  it is impossible to create an 
electron in an already filled state. 

In the electron-hole representation for a two-band model, we define the 
hole creation operator  

b~_k,_sz ---- avksz  • (51) 

This equation indicates that  the annihilation of a valence-band electron with 
a given momentum and z-component of spin corresponds to the creation of 
a hole with the opposite momentum and z-component of spin. Note that  
for clarity in Eq. (51) we use a comma between the - k  and - S z  subscripts, 
although it is probably clear without the comma since it does not make sense 
to subtract  a spin quantum number from a wavevector k. Similarly the hole 
annihilation operator is given by 

t (52) b - k , - s =  = arks= 

The  hole operators also obey anticommutation relationships, so that  the prob- 
ability of finding a particular valence-band electron becomes 
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(atvkszavks.) = 1 -- (b tk ,_szb-k , -sz )  , (53) 

where the brackets (...) are used to indicate an expectation value. The prob- 
ability of finding a valence electron is one minus the probability of finding a 
hole. The electron annihilation operator is 

aks~ =acksz 

and the electron creation operator is 

(54)  

a t = a  t (55)  ksz cksz " 

In the second quantized representation, the Hami l ton ianforNnon- in te r -  
acting electrons is 

t 

k s~ 

where we used the two-band approximation i.e. X = c, v. The index kin in 
Eq. (56) indicates that  this is the kinetic energy part of the full Hamiltonian of 
the interacting system. In the electron-hole representation, Eq. (56) becomes 

Sk in  = E E  [Cckatks aks.- t-gvk (1 - -b~k ,_ s  b_k,_s~)] (57) 
k sz 

Since the origin of energy is arbitrary, the constant term, ~ k , .  evk is usually 
left out. Then 

Hkin ---- E E (¢gO+ gek)atk, aks, + E Z ~hkbtks, bksz ' (58) 
k sz k sz 

where eek and ehk are given by Eq. (32). In going from Eq. (56) to Eq. (58) 
we set mn = - m y ,  where my is the valence electron effective mass and mh 
is the hole effective mass. 

An example of a physical quantity that  is represented by an operator is 
the particle number operator 

N = E nk,8, = E a ~ ' a k ' "  . (59) 
k,sz k,sz 

If we want to study the dynamics of the carrier distribution we have to solve 
the equation of motion for nk,s.- For this purpose we use the Heisenberg 
picture, where the operator O obeys the equation of motion (Heisenberg 
equation) 

ih dO = [0, H] = OH - HO (60) -~ 
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3 O p t i c a l  R e s p o n s e  o f  S e m i c o n d u c t o r s  

In our analysis of the optical semiconductor properties we often want to 
compute the optical absorption, refractive index etc. For this purpose we 
need the connection between the microscopic theory for the material and the 
solution of Maxwell's wave equation. For this purpose we introduce quanti- 
ties such as the dielectric function and/or  the complex susceptibility. More 
generally, and in particular for dynamical calculations we need the optical 
polarization P(r ,  t). The computation of this quantity is the main focus of 
the microscopic theory of the optical semiconductor medium properties. In 
this chapter we start  with the elementary oscillator model to introduce the 
relevant optical quantities (Sec. 3.1). In Sec. 3.2 we compute the optical re- 
sponse for a system of noninteracting (free) carriers before we proceed to 
derive the semiconductor Bloch equations for the interacting electron-hole 
system (Sec. 3.3). In Sec. 3.4 we evaluate these equations in the linear regime 
to study the excitonic signatures of the semiconductor bandgap absorption. 

3.1 Op t i ca l  R e s p o n s e  

In order to get some first insights we use the model of a single oscillator which 
allows us to introduce some basic properties of light-matter interaction. The 
oscillator is assumed to be a model for an electron with a charge e which 
can be displaced from its equilibrium position. For the case of an electric 
field polarized in x direction we introduce a polarization, defined as dipole 
moment per unit volume, as 

P = - n o e x  , (1) 

where ex  is the electric dipole moment, and no is the mean electron density 
per unit volume. Describing the electron under the influence of the electric 
field E ( t )  (parallel to x) as a damped driven oscillator, we can write Newton's 
equation as 

d2x dx m w 2 x -  e E ( t )  (2) m - ~  = -2m7~-~ - 

where 7 is the damping constant, and m and w0 are the mass and resonance 
frequency of the oscillator, respectively. Assuming a monochromatic field 

E ( t )  = E ( w ) e  -i~t , (3) 

and using 

x( t )  = x (w)e  - i~t  (4) 

we get from Eq. (2) 
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and from Eq. (1) 

m @2 + i 2 ~  - w~) x(w) = eE(w} (5) 

noe 2 1 
P @ )  - (6 )  m w 2 + i 2 7 w - w ~ E ( w )  . 

The coefficient between P(w) and E(w) is defined as the complex optical 
susceptibility X(W). We obtain 

x(~) = 2m~o ~ + i ~ -  4 ~ + iv + ~ (~) 

where 
~ (s) I 

is  the renormalized (shifted) resonance frequency of the damped harmonic 
oscillator. 

In general, the optical susceptibility is a tensor relating different vector 
components of the polarization Pi and the electric field Ei. An important 
feature of X(W) is that it becomes singular at 

' (9)  w = - i  7 + w o . 

This relation can only be satisfied if we formally consider complex frequencies 
w = w' + iw". We see from Eq. (7) that X(w) has poles in the lower half of the 
complex frequency plane, i.e. for w" < 0, but it is an analytic function on the 
real frequency axis and in the whole upper half plane. This property of the 
susceptibility can be related to causality, i.e., to the fact that the polarization 
P(t) at time t can only be influenced by fields E ( t -  r) acting at earlier times, 
i.e., V >_ 0. For more details see e.g. Hang and Koch (1994). 

The macroscopic Maxwell's equations can be written as 

curl B(r, t) = cl ~D(r,0 t) (10) 

curl E(r, t) = cl ~-~H(r,0 t) (11) 

The Fourier transformed displacement field D(w) can be expressed in 
terms of the polarization and electric field (in cgs units) 

D(w) = E(w) + 4~rP(w) = [ 1 + 47rX(W) ] E(w) = e(w)E(w) (12) 

where the optical (or transverse) dielectric function e(w) is obtained from the 
optical susceptibility (7) as 

) wvl 1 1 
e(w)=l+47rX(w ) = 1 - ~  w + i T - w ~  w + i  7+w~ (13) 



100 

Here wpz denotes the plasma frequency of an electron plasma with mean 
density no, 

wpl = - -  (14) 

The plasma frequency is the eigenfrequency of the electron plasma density 
oscillations around the position of the ions. 

The frequency dependent dielectric function e(w) has poles at w = ±w~ - 
i',/, describing the resonant and the nonresonant part,  respectively. If we are 
interested in the optical response in the spectral region around wo and if 
w0 is sufficiently large, the nonresonant part  gives only a small contribution 
and it is often a good approximation to neglect it completely. In order to 
simplify the resulting expressions we now consider only the resonant part  of 
the dielectric function and assume wo > >  % so that  wo ~ w~ and 

2 

e(w) = 1 WPl 1 (15) 
2Wo w + i~f - wo 

For the real part  of the dielectric function we thus get the relation 

2 
c ' ( w ) - l -  wPi w - w o  (16) 

2~o (~ - Wo) 2 + "~: ' 

while the imaginary part  has the following resonance structure 

2 
WPt 27 (17) 

e"(w) - 4w0 (w - w0): + 72 

Examples of the spectral variations described by Eqs. (16) and (17) are 
shown in Fig. 3.1. The spectral shape of the imaginary part  is determined by 
the Lorentzian lineshape function 27/((w - w0) 2 + 75). It decreases asymp- 
tomatically like 1 / ( w -  wo) 2, while the real part  of e(w) decreases like 1 / ( w -  
Wo) far away from the resonance. 

In order to understand the physical content of the formulae for e'(w) and 
e"(w), we consider how a light beam propagates in the dielectric medium. 
From Maxwell's equations (10) and (11) with B(r ,  t) = H(r ,  t), which holds 
at optical frequencies, we obtain 

0 1 02 
curl curl n ( r , t )  = - ~ c u r l  H ( r , t )  - c2 ot2D(r , t )  . (18) 

Using curl curl -- grad div --A, we get for a transverse electric field with 
divE(r ,  t) -- 0, the wave equation 

1 0:  
AE(r ,  t) c2 0-~D(r ,  t) = 0 . (19) 

Here A = V 2 is the Laplace operator. A Fourier transformation of Eq. (19) 
with respect to time yields 
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Fig. 3.1. Dispersion of the real and imaginary part of the dielectric function. (From 
Haug and Koch 1994) 

O32 2 
AE(r ,w) + -~e ' (w)E(r ,w) + i~y2e"(w)E(r,w ) = 0 • (20) 

For a plane wave propagating with wavenumber k(w) and extinction coeffi- 
cient ~(w) in the z direction, 

E(r ,w) = E0(w)e i[k(~)+i~(~)]z , (21) 

we get from Eq. (20) 

0j 2 
[k(w) + i~(w)] 2 = ~-y[e'(w) + ie"(w)] . (22) 

Separating real and imaginary part of this equation yields 

~ 2  
k2(~) - ~2(~)  = ~ ' ( ~ )  , (23) 

aj 2 
2 ~ ( ~ ) k ( ~ )  = ~ " ( ~ )  . (24) 

Next, we introduce the index of refraction n(w) as the ratio between the 
wavenumber k(w) in the medium and the vacuum wavenumber k0 = ca/c 
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k(~)  = n(w) ± 
C 

and the absorption coefficient a(w) as 

(25) 

a(w) = 2n(w) . (26) 

The absorption coefficient determines the decay of the intensity I o( [E[ 2 in 
real space. 1/a is the length, over which the intensity decreases by a factor 
1/e. From Eqs. (23) - (26) we obtain the index of refraction 

and the absorption coefficient 

- ~--~--~"(~) . (28) 
~ ( ~ ) -  n(w)c 

Hence, Eqs. (17) and (28) yield a Lorentzian absorption line, and Eqs. (16) 
and (27) describe the corresponding frequency-dependent index of refrac- 
tion. Note that  for e"(w) < <  d(w), which is usually true in semiconductors, 
Eq. (27) simplifies to 

n(w) - ~ - )  . (29) 

Furthermore, if the refractive index n(w) is only weakly frequency dependent 
for the w-values of interest, one may approximate Eq. (28) as 

~(w) ---- ~---~"(w) = 4~wx"(w)  , (30) 
nbC nbC 

where nb is again the background refractive index. 

3.2 F r e e - C a r r i e r  E q u a t i o n s  of  M o t i o n  

As a first example for a many electron system we compute the optical re- 
sponse of a system of noninteracting carriers. Clearly, since this free-carrier 
approximation ignores the important effect of the Coulomb interaction among 
the carriers it is never justified for real semiconductors, however, many of its 
results are useful for our full calculation in the following sections. The free- 
carrier Hamiltonian 

H = Hkin + Hc- f  

t ~vkavkavk] = E  [Cckackack- }- ? 
k 

• t 

k 
(31) 
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where we used Eq. (2-56) for the kinetic part of the Hamiltonian. The quan- 
tity 

#k = #c . (k)  (32) 

in H c - f  is the dipole matrix element between the valence and conduction 
band. We assume a dipole interaction between the optical field and the car- 
riers 

H~_! = - P . E  , (33) 

where the active medium polarization is given by the operator 

k 

In Eqs. (31)-(34), we used the two-band approximation, and absorbed the 
spin index into k, so that ~ k  is actually ~ks . ,  and a s k  and a~k are actu- 

ally aaks ,  and aaks,t, respectively. In the electron-hole representation, using 
Eqs. (2-51) and (2-52) we can write 

t t Pkb_kak] , (35) p_= E [l~kakb k + * 
k 

and 

k 

k 

where we assumed simple parabolic bands. We denote the unrenormalized 
bandgap energy ego and reserve eg for the renormalized value obtained from 
many-body theory. With Pk without vector symbol we denote the projection 
of the dipole matrix element in field direction. 

As discussed in the previous section of this chapter, we need the polar- 
ization, i.e. the expectation value of the polarization operator, 

P ( z ,  t) = (P)  (37) 

as link between the classical field and the quantum mechanical semiconductor 
medium. In the slowly varying amplitude and phase approximation we can 
write 

P ( z )  = 2e -'[Kz-~t-¢(z)] E P~,Pks, , (38) 
k 

where 

Pk = (b--kak) • (39) 
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The relevant quantities in the microscopic semiconductor medium theory 
are Pk together with the electron and hole occupation numbers 

nek = (atkak> , (40) 

nhk  = (b[kb-k) . (41) 

In the Heisenberg picture, the derivation of the equations of motion for the bi- 
linear operators in Eqs. (39)-(41) involves the evaluation of the commutators 
as appearing in the Heisenberg equation of motion, Eq. (2-60). Performing 
the elementary calculations with the Hamiltonian (36) and the operators in 
Eqs. (40) and (41) we obtain 

i 
t) ( a ~ a k  + b t k b - k  -- 1) (42) d b - k a k  = -- iwk b--kak -- -~#k E (z ,  

d i t 
- ~ a k a k  = -~ 

d t (44) = - ~ b _ k b _ k  , 

where the transition energy is 

h2k  2 
~ ' )k  : C90 -{- Eek "~- Ehk ---- EgO "~ 2mr (45) 

and m r  is the reduced mass: 

1 1 1 
- + ( 4 6 )  

m r  m e  m h  

Taking the expectation values of Eqs. (42) through (44), yields 

dpk  iwkp  k _ i d t  - - ~ # k E ( z , t )  (nek + nhk  -- 1) , (47) 

dnek  i 
- ~ E ( z , t )  (#kPk  -- #*kPk) , (48) 

(49) dnhk  

dt  

In order to compute the free-carrier absorption spectrum we now assume 
that  the carrier distribution is the quasi-equilibrium Fermi-Dirac distribution 

1 
nak = fak = e / 3 ( e ~ k _ t t ~ )  .~_ 1 ' (50) 

where fl = 1 / ( k B T ) ,  kB  is the Boltzmann constant, and #a is the quasi- 
chemical potential for electrons (a = e) or holes (a = h). The chemical 
potential is determined from the condition 
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N~ = E f~k ~ p ~ ( N ~ , T )  , (51) 
k 

i.e. that  the sum over the distribution function yields the total number of 
carriers. Usually, Eq. (51) has to be evaluated numerically, but  analytical 
approximations exist for special situations (see e.g. Haug and Koch 1994). 
The carrier scattering processes leading to the quasi-equilibrium distribution 
(50) are discussed in Sec. 4.2. Here we simply take the carrier distribution as 
given and use the carrier density as an input parameter,  which may be slowly 
time dependent if we are interested in such a situation. Hence, Eq. (47) in 
the quasi-equilibrium limit becomes 

dpk i 
(iWk -4- 3') Pk -- -~ltkE(z, t) (fek A- fhk -- 1) (52) 

dt 

Here we phenomenologically added a finite damping rate 3' which is the in- 
verse dephasing time 

1 
T2 = - • (53) 

Formally integrating Eq. (52) from - o c  to t yields 

f__" [f~k(t') + fhk(t ' )  -- 1] . (54) 
#kE(Z,  t t ) 

pk(t) = --i dt'e (i~k +'~)(t-t') li 
oo 

At this point we now make the rate equation approximation where we assume 
that  the carrier distributions f~k(t) and the field envelope in 

E(z,  t) = (55) 

vary little in the time T2. Pulling these terms out of the time integral in 
Eq. (54) allows us to easily evaluate the remaining integration to get 

pk(t) = --i #k ei[Kz-vt-e(z)] 
2h [fek(t) + fhk(t) -- 1] E(z )  i (Wk -- u) + 7 (56) 

Substituting this into Eq. (54) allows us to compute the optical polarization. 
Using the results of Sec. 3.1 we obtain the free-carrier absorption coefficient 

Olfree(l] ) : C~f E I#kl2 (1 - fek -- f h k )  (~((-dk - -  V) , ( 5 7 )  

k 

where a f  contains all the prefactors. 
To see how this result depends on the dimensionality d of the system 

under consideration, we convert the sum over k to an integral over the energy 
c = h2k2/(2ra). For d = 3, 2, 1 we get 
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Z = ~2 (ak)---~ -~ 2 ~ e~k, (581 
k k 

where the factor 2 results from the summation of Sz. In polar coordinates 
Eq. (58) can be written as 

E --4 2 dff2d dkk d-1 , (59) 
k 

where f~d is the space angle. For an isotropic integrand 

47r for d = 3 
f d~d -Qd = 2~r for d = 2 

2 for d =  1 
(60) 

Using 

= h~k~k (61) 
m 

we finally get 

(L) Z F(k~) ~ 
k 

d {2m,~d/2 ~ 
~Qd k,-~-]  fo dee(a-2)/2F(e) " (62) 

Using this result in Eq. (58) we obtain 

where 

(63) 

E~ ~ ) 
A ~_. •// - -  egO (64) 

ER 

and a} again contains all irrelevant prefactors. The unit step function O(A) 
in Eq. (63) makes sure that  the absorption starts at 

h .  = E~0 + Eo (d) , (65) 

i.e. at the bandgap energy plus the confinement energy in the d-dimensional 
system. Clearly, E; d) = 0 for d = 3, and it is given by Eq. (2.46) with 
n = 1 and k± = 0 for the two-dimensional quantum-well system. For a 
quadratic one-dimensional quantum wire we have twice the quantum-well 
confinement energy. An example of the resulting absorption coefficient is 
plotted in Fig. 3.2. 
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Fig. 3.2. Free carrier absorption spectra for semiconductors in which unrestricted 
carrier motion in three, two or one space dimension is possible. (From Haug and 
Koch 1990) 

3.3 S e m i c o n d u c t o r  B l o c h  E q u a t i o n s  

For an interacting electron system in a dielectric medium we have to include 
also the Coulomb interaction. Then the system Hamiltonian is 

H = Hkin + H c - f  + HC , (66) 

where we write the Coulomb interaction energy among the electrons in two- 
band approximation as 

1 t t , a ,  t t 

k,k' q:~O 

t t 1 
+ 2a c,k +q a v,k' _q avk, ack ] (67) 

Here the first two terms describe the repulsive intraband carrier interaction, 
and the last term describes the repulsive interband Coulomb interaction be- 
tween the electrons in the valence band and the electrons in the conduction 
band. The Coulomb interaction Hamiltonian (67) contains the Fourier trans- 
form of the Coulomb potential  energy Vq, which for a bulk material  is 



108 

1/ 
Vq = ~ d3r e - i q ' r V ( r )  

. e 2 
= 1 d3 r e _ ~ q . r  

V ebr 

47re 2 
= ebVq 2 . (68) 

As discussed in Sec. 2.4 the confinement potential in quantum wells ideally re- 
stricts the carrier motion to the x-y plane. However, the Coulomb interaction 
between the electrons is not confined, i.e. it remains three dimensional. Hence, 
for an idealized quantum well system we have to take the two-dimensional 
Fourier transformation of the 3D Coulomb potential, 

1 f • e 2 ] e - z q  .r  _ _  Vq = V d2r 
e b r  

21re 2 
= (69) 

ebqA " 

In Eq. (69), A = V / w  is the quantum well area, and w is its width. 
In the derivation of Eq. (67), we use the fact that  the Coulomb scattering 

does not alter the spin orientation of an electron and that  the q --= 0 contri- 
bution, which diverges, is cancelled by the q = 0 terms from the electron-ion 
and ion-ion Coulomb potentials. Fhrthermore, we omit Coulomb terms that  
fail to conserve the number of electrons in each band, since such terms involve 
interband transitions, which are very unfavorable energetically. 

We transform to the electron-hole representation and restore normal or- 
dering of all creation and annihilation operators. This gives the two-band 
Hamiltonian for interacting electrons and holes 

k 

1 

k , k  ~ q:~O 

* t - E [#kakszb-k,-sz + #~,b-k,- , .aks,]  E ( z , t )  , (70) 
k 

where constant terms have been dropped because they only lead to an irrel- 
evant shift of the reference energy. The kinetic energies in Eq. (70) are 

h2k 2 
E e k  - -  , ( 7 1 )  

2me 
h 2 k2 

- , ( 7 2 )  Chk = -- vk + Vq 
2mh 

q~0 
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where the term containing Vq in ehk originates from the replacement of 
valence-band electron operators by hole operators in the interaction term 

1 
~ E E  V, a~,k+qa~,k,-qavk'avk 

k,k '  qs~0 

of Eq. (67). Equation (72) differs from the free-carrier result in that the 
kinetic energy and therefore the hole energy includes the Coulomb energy of 
the full valence band. 

Proceeding as in the free carrier model calculations, we derive coupled 
equations of motion for the electron and hole populations nek and •hk and 
for the interband polarization Pk- The derivation requires simple but lengthy 
operator commutations to reduce the commutators in the Heisenberg equa- 
tions to 

i 
dpk = --iw~pk -- ih-J#kE(z,t)[n~k + 'P"hk --  11 + ~ ~ Vq 
dt 

k'  ,q¢0  

X [(atk,+qb_kak, ak+q) + (bk,-qbk, akb -k -q ) -  (atk,+qb-k+qak'ak) 

--(btk,_qb-kbk, ak-q) + (b--k+qak-q)Sk,k,] , (73) 

and 

dnek i 
dt - ~ E(z, t) [#kPk - -  /~Pk] 

i 
--  ( a k + q a k , _  q k a k  ) +-h E Vq [(atkatk,_qak_qak, ) t t a , 

k'  ,q~O 

+(atkak_qbtk,_qbk, } --(atk+qakbk,_qbk,)] , (74) 

dnhk i 
dt - ~ E(z, t) [/tkp~ --/t~pk] 

i 
--  ( b _ k + q b k ,  q - -kbk  ) -~-h E Vq [(btkb~,_qb_k-qbk ,) t t b , 

k'  ,q#O 

+(atk,+qak, bt_kb_k+q) - (a~,+qak, bt_k_qbk)] , 

where the transition energy is here denoted by 

(75) 

hw~ (76) = Eek + Chk "~- CgO • 

We introduce the prime to distinguish between the unrenormalizated energy 
hw~ from the renormalized one hWk, which appears later. Equations (73) - 
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(75) show that the Coulomb interaction couples the two operator dynam- 
ics to four-operator terms. One way to proceed is to factorize these terms 
into products of two-operator terms, yielding the Hartree-Fock limit of the 
equations. To obtain a systematic hierarchy of equations, we separate out 
the Hartree-Fock contributions. For example, we write for a two-operator 
combination AB, 

d (AB) = d (AB)HF + [ d (AB) - d (AB)HF] 

d 
(AB)cot • (77) 

d 
:-- (AB)HF + --~ 

Here HF indicates the Hartree-Fock contribution. The quantity inside the 
square bracket then contains both two and four-operator products, which we 
represent in general by (ABCD). These contributions beyond the Har t ree-  
Fock approximation are often called collision (subscript col) or correlation 
contributions. They will be discussed in detail in the following chapter. Here 
we only mention that with the many-body Hamiltonian (70), the Heisenberg 
equation of motion gives for the equation of motion for (ABCD) : 

d 
(ABCD) = (ABCD)F + (ABCD) -~(ABCD)F (78) -~ - , 

where d(ABCD)/dt contains expectation values of products of up to six 
operators, and we use the label F to indicate the result from a Hartree-Fock 
factorization of the four and six operator expectation values. We can continue 
by deriving the equation of motion for 

(ABCDEF) - [ d (ABCD) - d (ABCD)F 1 

and so on. The result is a hierarchy of equations, where each succeeding 
equation describes a correlation among operators that is higher than the one 
before. In practice, we truncate the hierarchy at some point. 

Returning to Eqs. (73) - (75), we first evaluate the Hartree-Fock contri- 
butions. To do so, we factorize all the expectation values of four operator 
products into all possible operator combinations leading to products of den- 
sities and/or polarizations. For example, for (atkatk, alal,), we can have the 

two-operator combinations t t ( a k a  k, ) (a ,  a r  ), ( a t  a l ) ( a t  , al, ), and (atal,)(atk, a,). 
Taking the anticommutation relations into account to get the proper signs 
between these combinations, we find 

t t (ak ak, a, al, ) ( 4  4 '  >(am a,, ) - ( 4  a,)<4, a, , /+ ( 4  al, )(4,  al) 
: 0 ÷ [--(~k,,(~k,,,, ÷ (~k,,'C~k, 1] nek'rtek, • (79) 
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Another example is 

(atk, +qbq-kak, ak) "~ (~k',k-qnekPk' • (80) 

Factorizing all the other four-operator products in this way we find the semi- 
conductor Bloch equations 

Opk[ (81) dpkdt - iwkpk -- i[2k(Z, t) [nek + nhk -- 1] + ~ cot 

dn~k i On~k (82) 
dt - i [nk(z,t)  -- n (z,t)w] + co/ 

dnhk i Onhk I (83) 
dt -- ~ [f~k(Z, t)Pk -- f~l~(z,t)pk] 4- ~ col 

We have written the terms containing the Hartree-Fock contributions explic- 
itly, while the higher order correlations are denoted formally by the partial 
derivatives O/Ot]cot. The Hartree-Fock contributions in Eqs. (81)-(83) contain 
two important many-body effects, namely a density dependent contribution 
to the transition energy, and a renormalization of the electric-dipole inter- 
action energy. Specifically, hw~ of Eq. (76) is replaced by the renormalized 
transition energy 

h~d k : ~KO~ -- E Y~k-k'[ (nek' 9t- nhk, ) , (84) 
k'~:k 

and the Rabi frequency/~kE(z, t ) / h  is renormalized as 

f2k(z,t) = # k E ( z , t )  + 1 h h E Ylk-k'lPk' ' (85) 
k'~-k 

where the Coulomb terms (o¢ Y~k_k,[) in Eqs. (84) and (85) are called the 
exchange shift, and the field renormalization, respectively. The fact, that 
the Rabi frequency is multiplied by the population factor [n~k + nhk - -  1 ]  in 
Eq. (81) leads to nonlinearities in the resulting optical response often denoted 
as phase space filling effects. 

The Coulomb terms in Eq. (81) show a large degree of symmetry. To see 
this more clearly, we write the Hartree-Fock part of Eq. (81), i.e. without 
Opk / Ot}¢o! as 

dpk] : E Okk'Pk' i 1) , (86) dt HE k~ -- -~pkE (nek + nhk -- 

where for k = k' 

i 
Okk : --io3~ "4- ~ E Y~k-k"[ (nek" q- nhk . )  , (87) 

k" ~k 
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and for k # k' 
i 

O k k '  = - - ~ V [ k - k ' l  ( n e k  + 7thk --  1) . ( 88 )  

We see that the Coulomb terms appear with opposite signs on the diagonal 
and nondiagonal parts of the matrix O__. This leads to compensation effects in 
the influence of these many-body terms on aspects of the optical spectra. For 
example, the excitation independence of the excitonic resonance frequency, 
seen in Figs. 5.5 and 5.6, results to a significant degree from cancellation 
effects between the density dependent bandgap renormalization (diagonal 
part of O__) and the weakening of the exciton binding energy (nondiagonal 
part). 

3.4 Exc i tons  

In this section, we examine the low density limit of the semiconductor Bloch 
equations. In this limit, nek : n h k  ~-- 0, and the collision terms vanish because 
no scattering partners are available. Equation (81) reduces to 

dpk = - - i w k P k  + i ~ k  , (89) 
dt 

which efficiently isolates the influence of the renormalized electric-dipole in- 
teraction frequency ~k- Choosing a plane-wave optical field and making the 
rotating-wave approximation, we obtain 

[~3 k --  V -4- i ' l l  P k  : J'~k , ( 90 )  

where 7 is a small phenomenological damping coefficient. Fourier transform- 
ing Eq. (90) to coordinate space, we find 

[ 2 2 e2 ] 
h V r - h ( u -  i7) p(r) = #E53(r)V (91) 
2mr ~br + Eg 

where we ignore the k-dependence of the interband dipole matrix element, 
which is often a reasonable approximation as long as we are only interested 
in small k-values and frequencies close to the fundamental absorption edge. 

Equation (91) is an inhomogeneous differential equation, which may be 
solved by expanding p(r) as a linear superposition of the solutions of the 
corresponding homogeneous equation 

h V~ 
2mr /bbr Cn(r) = eriCh(r) . (92) 

Equation (92) is the SchrSdinger equation for the relative motion of an elec- 
tron and a hole interacting via the attractive Coulomb potential. In semi- 
conductor physics Eq. (92) is known as the Wannier equation. As already 
mentioned near the end of Sec. 2.3 there is a one-to-one correspondence be- 
tween the electron-hole problem and the hydrogen atom if one replaces the 
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proton by the valence-band hole. The solutions of the Wannier equation are 
therefore completely analogous to those of the hydrogen problem, which are 
discussed in most quantum mechanics textbooks. There are bound states 
called excitons, or more specifically Wann ie r  excitons,  and there are contin- 
uum states. 

The bound and continuum eigenfunctions of the Wannier equation form 
a complete and orthonormal basis set, so that we can write 

p(r) = E P n C n ( r )  • (93) 
n 

Substituting Eq. (93) into Eq. (91), multiplying by ¢ * ( r )  and integrating 
over r yields 

#Vein (r = 0) E , (94) 
P ' ~ =  h ( v - i T ) - % - e , ~  

where we used the orthormality condition 

d3r ¢ * ( r ) ¢ n ( r )  5m,n • (95) 

Inserting Eq. (94) into Eq. (93) gives 

= o)  
(96) 

is then given by 

P(v) (99) X(')- E(~) 

x(,~) - 2 I~1 ~ ~ I¢,~(r = o)15 
eb h (v - iv) - ¢g - en 

and the corresponding absorption coefficient is 

(100) 

which has the Fourier transform 

E- #¢~ (r = 0). / d 3r¢~ (r)e ik'r (97) 
~ = - ~  h ( ~ - i ~ ) - ~ 9 - ~ .  

T~ 

For the space dependent optical polarization we thus obtain 

0) 12 
P(v)  = - 2  I~12 E ~ I¢~(r = (98) 

where [¢n(r = 0)[ 2 is the probability of finding the electron and the hole 
within the same atomic unit cell. The optical susceptibility 
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where 

a(v) = 4~rVIm [X(V)] 
n b C  

_ _ o o  
n=l  n3 +~-~" + O (A) 7resinh (T r /v~)  

, ( 1 0 1 )  

A _ l i v  - % 
CR 

2J l 
aO - -  h n b c a 3  0 , 

and we have used the explicit form of the electron-hole pair eigenfunctions 
(see Haug and Koch 1994). Equation (101) is known as the E l l i o t t  f o r m u l a  

and describes the bandgap absorption spectrum in an unexcited bulk semi- 
conductor. 

Equation (101) predicts that  the absorption spectrum consists of a se- 
ries of 5-functions at discrete energies. These resonances are the exciton 
peaks. The prefactor in front of the 6-functions in Eq. (101) shows that  
the exciton resonances have a rapidly decreasing oscillator strength o( n -s.  
The appearance of the exciton resonances in the absorption spectrum is a 
unique consequence of the electron-hole Coulomb attraction. The second term 
in Eq. (101), acont ,  describes the continuum absorption due to the ionized 
states. It can be written in terms of the free-carrier absorption, Eq. (63) for 
d = 3 and f~ = f h  = 0 as 

7r e '~/v'-~ 
= , (102)  

sinh ( l r /x /~ )  

where the correction to af~e~ is called the S o m m e r f e l d  or C o u l o m b  e n h a n c e -  

m e n t  factor. It is a simple exercise to verify that  this factor approaches the 
value 27r/x/-A for A --+ 0, which cancels the x/A factor in the free-carrier 
absorption for a three-dimensional system and yields a constant value at the 
bandgap. This is strikingly different from the square-root law of the free- 
carrier absorption. Similar calculations for d = 2 and d = 1 show that  the 
free-carrier absorption at the bandgap is enhanced by a factor 2 for the two- 
dimensional system, and the 1 / ~  singularity of the one-dimensional system 
is replaced by a constant. (For more details see e.g. the discussion in Haug and 
Koch 1994.) Hence, we note that  the free-carrier absorption results are sig- 
nificantly modified in real semiconductors, where the electron-hole Coulomb 
attraction is always present. 

If one takes into account the broadening of the exciton resonances caused 
by, for example, the scattering of electron-hole pairs with phonons, then only 
a few bound states can be spectrally resolved. An example of an absorption 
spectrum predicted by the Elliott formula is depicted in Fig. 3.3. We see that  
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the dominant feature is the ls-exciton absorption peak. The 2s-exciton can 
also be resolved, but its height is only 1/8-th that of the Is-resonance. The 
other exciton states in GaAs materials usually appear only as a collection of 
unresolvable peaks just below the bandgap. 

a($) 
of 0 

300 

200 

100 

0 , = : = : : = = : = : : = =  

-1.5 -I -0.5 0 0.5 1 1.5 

A 

Fig. 3.3. Near bandgap absorption spectrum for a three dimensional semiconductor 
with parameters typical for good quality GaAs at low temperatures. (From Haug 
and Koch 1994) 
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4 O p t i c a l  N o n l i n e a r i t i e s  i n  S e m i c o n d u c t o r s  

In this chapter we summarize the basic ingredients of a microscopic theory 
of those semiconductor nonlinearities that  are caused by resonantly excited 
electron-hole pairs. Since the properties of the electron-hole system are sensi- 
tively dependent on the excitation level (light intensity) and on the detailed 
excitation conditions, the resulting optical polarization is a nonlinear function 
of the light field. Hence, the various carrier interaction processes are observed 
experimentally as a nonlinear optical response. Besides the resonant optical 
nonlinearities discussed here, there are other nonlinear effects, such as two- 
or more photon absorption processes, effects due to band non parabolicities 
etc. which are not the subject of these lectures. 

In Sec. 4.1 we outline the derivation of approximations for the correlation 
contributions entering the semiconductor Bloch equations. Sec. 4.2 discusses 
the Boltzmann equation as an approximation to the intraband (carrier) re- 
laxation dynamics, and Sec. 4.3 presents the corresponding analysis of the in- 
terband polarization decay. In Sec. 4.4 we outline the screened Hartree-Fock 
approximation which for special situations leads to a simplified numerical 
analysis of the nonlinear semiconductor response. 

4.1 C o u l o m b  C o r r e l a t i o n  Effects 

Our basic equations are the semiconductor Bloch equations, Eqs. (3-81) - (3- 
83) derived in the previous chapter. Even though these equations already at 
the Hartree-Fock level constitute a set of nonlinear integro-differential equa- 
tions, the analysis of most resonant optical nonlinearities in semiconductors 
requires the inclusion of additional effects such as Coulomb screening, damp- 
ing, and polarization dephasing. For a systematic investigation of these phe- 
nomena we have to evaluate the correlation contributions at some level of 
approximation. 

To study these correlation contributions in the semiconductor Bloch equa- 
tions, we start  by deriving equations of motion for quantities describing the 
deviations of the full correlation terms from their corresponding Hartree-Fock 
factorized parts. For example, 

whose time derivative is 

qok ql'kk 
(1) 

, t ,  d (o o qokqok)) qok 
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From the Heisenberg equation of motion, we find 

• (2) 

d a t t 
d t ~ (  kak'-qak-qak > 

i I k a k , _ q a k - q a k , ) A ~ e k k '  q 
~ \ [Coul 

where we use the full electron-hole Hamiltonian except for the carrier-field 
interaction, since it does not play a role in the collisions. Furthermore, we 
introduced the abbreviations 

AEekk'q -~" Eek + ge,kt--q -- Ce,k--q -- Eek' (4) 
and 

{hd• ' tat ak,) [Hc,akaw_qak_qak,]) (5) \ a k  k ' - q a k - q  Coul = ( t t 

Evaluation of the commutator  in Eq. (5) leads to expressions containing prod- 
ucts of up to six operators that  are too lengthy to show here. 

Formally integrating Eq. (3), we get 

(6) 

where 7 is a phenomenological decay constant added so that  the integral 
vanishes at the lower boundary. In general, the correlation at time t depends 
on the evolution of the system from - o o  to t. This is the Coulombic memory 
effect. Fortunately, it is often a reasonable approximation to assume that  
the memory time is not very long and to neglect memory effects altogether, 
making the Markov approximation. Technically, this amounts to assuming 
that  the Coulomb contribution is slowly varying compared to the exponential, 
so that  we can move it outside the integral in Eq. (6). The resulting integral 
can be readily evaluated to give 

t t ( z )  / t a  t ak,>~," d~(akak,_qak_qak, ) 1 
5 \ a  k k ' - q a k - q  dt Coul -- iA~ekk 'q /h  -- 7 

A similar result is obtained for the other four-operator terms which appear 
in the semiconductor Bloch equations, (3-81)-(3-83). 



118 

At this stage we still do not have a closed set of equations because of 
t t the six-operator expectation values oceuring in5  ( a k a  k, _qak--q ak, ) / d r  Co,t" 

The equation of motion for these six-operator terms introduces eight-operator 
terms, i.e., the typical many-body hierarchy problem. In order to close the 
equations we again make a factorization approximation. We factorize all the 
six- and four-operator terms which occur in the Coulomb parts to obtain the 
simplest possible expression for the scattering terms. The detailed calculation 
yields the following results for the electron population equation: 

Onek I wout (1 n e k ) . ~  {n} , (8) Ot col = --nekZ~ek {rt} + -- 

where, for simplicity, we ignored terms containing scattering contributions 
involving interband polarizations. These additional terms are discussed e.g., 
by Jahnke et al., (1997). The rates Z ~  t {n} and E~, {n}, describing the 
effective scattering out of and into the state k, are given by 

Eout 7C 
ek {n} = ~ E E E  (2V: -(~e,bVqVlk-k'+qO 

b=e,h q~0 k ~ 

X(~(ee,k + eb,k' -- ee,k+q -- eb,k'-q) 

x (1 - ne,k+q) rib,k, (1 - nb,k,'_q) , (9) 

and 

75 
~ {"} = ~ E E Z (2V: --(~e,bVqVIk-k'+ql) 

b=e,h q=~0 k' 

X~(Ee,k -{- Eb,k' -- g'e,k+q -- Eb,k'--q) 

Xne,k+q (1 - rib,k,) nb,k,-q • (10) 

The notation E {n} symbolizes the functional dependence of these rates on 
the electron and hole distribution functions. The corresponding equations for 
the hole population nhk are obtained by the interchange e ~ h in Eqs. (8)- 
(10). 

It is sometimes convenient to write the total relaxation rate of nak as a 
single decay rate 

r, out in ~yc~k{n} -~ z.~c~ k {n} + ~t~k {Tt} , (11) 

in terms of which the scattering integral becomes 

Onek col Ot = --'Yak{n}nc~k + ~V'/a~ {n} • (12) 

Here we see explicitly that scattering both into and out of the state k are 
relaxation processes, although one increases the probability nak, while the 
other one decreases it. 
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For the collision terms in the equation for the interband polarization, we 
obtain 

OPk I = - ~_, Akk'PW , (la) 
Ot col k' 

where, for notational simplicity, we show here only the terms that  are linear 
in the polarization, For k -- k' ,  

1 
A k k = ~  Z ZZ(2vq2-6~'bVqVIk-k ' '+ ' l i )g(6e)  

a,b=¢,h k I' q:j~0 

x [n,,k+q (1 -- nbk,,)nb,k"-, + (1 -- n,,k+q)nbk" (1 -- nb,k,,-q)] • (14) 

Here, we used the abbreviation 

{~E : Eak + Cbk" -- Ca,k+q --  E b , k " - q  , 

and the generalized &function (Heitler Zeta function) is 

(15) 

lim - - i  _ rta (z) + i p  ( l ~ (16) g(x) = 
,r.-+o x + i7 \ x ]  

For k # k',  

1 
Akk '  = h Y~* Z ( 2 V :  - ( ~ a , b V q V [ k - k ' ' + q [ ) g ( - a E )  

a,b=e,h k"  

x [(1 - n~k) (1 -- nbk,,) nb ,k" - -q  + n a k n b k "  (1 - Tl, b,k,,--q) ] (17) 

where q = k' - k. 
Equation (13) has been written already in a form showing that  the scat- 

tering matrix __A adds to the Hartree-Fock matrix O of Eq. (3-86). In fact, the 
diagonal and nondiagonal terms in A are the second order (in the Coulomb 
potential) contributions to the energy and field renormalization, respectively. 
In general, the matrix A contains also terms where one or more of the popula- 
tion factor are replaced by polarizations (Jahnke et al. 1997). Those terms are 
especially important under coherent nonlinear excitation conditions, where a 
large induced interband polarization is present. 

4.2 Carrier Quantum Boltzmann Equation 

The collison contributions in the carrier equation (8) are actually the sim- 
plest version of the famous quantum Boltzmann scattering integral for carrier- 
carrier collisions. One remarkable feature of Eq. (8) is that  for nak = fak = 

1 i.e. if the carriers are in Fermi-Dirac distributions, the Boltz- 

mann scattering integral is identically zero. The fact that  Of/Otlcot = 0 
implies that  

* S °'*tr*l (1 f~k) i,~ - Z~k{f  } (18) Jo& o& "t d ] : 
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for nonvanishing in- and out-scattering rates. Equation (18) describes the 
detailed balance condition, for which the scattering into each state is exactly 
balanced by the scattering out of that  state. This is the quasi-equilibrium 
situation where the carrier plasma is characterized by a plasma temperature 
T and a quasi-chemical potential. Generally, the plasma temperature differs 
from the lattice temperature. It is important to realize that  even though the 
distribution functions are time independent, i.e. Fermi-Dirac, this does not 
imply the absence of scattering events. The individual terms in Eq. (18) are 
non-zero and rather large. However, they exactly balance each other. 

Generally, there are a number of physical quantities that  are conserved 
in the carrier-carrier scattering processes. These conservation rules can be 
written as 

Oco, [~k Fi(k)nak ] =0, i = 1 , 2 , . . . 5 ;  a=e,h (19) 

with 

F1 = 1 (20) 

F2 = k~, F3 = 4 ,  Ft  = kz (21) 

F5 = k 2 • (22) 

Equations (19) and (20) correspond to total particle number conservation, 
Eqs. (19) and (21) to total momentum conservation, and Eqs. (19) and (22) 
to total kinetic energy conservation, respectively. 

Since one typically does not encounter a drifting plasma in a semiconduc- 
tor medium, the total momentum is originally zero, and because of Eqs. (19) 
and (21) it will remain zero. To see the implications of the other conserva- 
tion rules, let us consider the example of nonequilibrium carrier relaxation 
experiments performed using femtosecond (10-15s) pulse excitation of semi- 
conductor interband transitions. In these investigations, the initially prepared 
nonequilibrium carrier distribution is rapidly modified by carrier-carrier col- 
lisions so that  it approaches the Fermi-Dirac distribution. Under most con- 
ditions, the carrier-carrier equilibration processes occur very rapidly, at a 
sub-picosecond timescale. This situation is depicted in Fig. 4.1, where the 
electron distributions are plotted at different times after the excitation. The 
curves are numerical solutions of the full carrier-carrier Boltzmann equation 
(8), including electron-electron, electron-hole, and hole-hole scattering. The 
carrier distributions immediately after the excitation pulse is plotted as the 
solid curve in Fig. 4.1. The other curves show the evolution of the carrier 
populations towards a Fermi-Dirac distribution. However, since the kinetic 
energy is conserved, the plasma temperature of the relaxed distribution is 
determined by the kinetic energy of the original nonequilibrium distribution. 
As a result, depending on the excess energy of the excitiation pulse (i.e., 
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how high above the band minimum are the carriers generated), the effective 
p lasma tempera ture  is well above the lattice temperature.  Relaxation of the 
electron and hole kinetic energies (plasma cooling) happens only by collisons 
with other quasi-particles, most important ly  with phonons. 
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Fig. 4.1. Temporal relaxation of an electron distribution function. At t = 0 the 
carriers are generated by interband excitation with a short pulse. Snapshots of the 
distribuion function at different times after the generation are plotted until final 
equilibrium is reached (t -- 5ps). For these results only carrier-carrier scattering 
was included. (F~om Jahnke and Koch 1995) 

The  carrier-phonon Boltzmann equation can be derived in a similar way 
as Eq. (8), where however, the carrier-phonon part  has to be added in the 
total  Hamil toniam For the example of LO (longitudinal optical) phonons the 
resulting equation is 

± (1 - he,k-q) nph,± q -t- 5 q- dnek -=-27rZG2q~ Ak, q nek 
dt e - -p  q,4- 

( 1 
- (1 - nek) Ue,k-q nVh,+q + 5 7= ' (23) 

which is the Bol tzmann collision integral for electron-LO phonon scatter- 
ing, with g±q being the phonon population. Here we denote the frequency 
differences Ak~q as 
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h A ~ , q  = ek  --  e k - q  4- ~ , O L O  , (24) 

and G~ is the scattering matrix element [for its definition and further details 
see e.g. Chap. 21 in Haug and Koch (1994)]. The different terms in Eq. (23) 
describe the transition rates in and out of the state k under absorption or 
emission of LO-phonons. The first two terms are the transition k --+ k - q 
under emission (upper sign) or absorption (lower sign) of a phonon. The 
second two terms describe the transition k - q  ~ k under absorption or 
emission of a phonon. The phonon population function rtph,q in general has 
to be computed self-consistently. However, it is often possible to simplify the 
problem by assuming that  the phonons are in thermal equilibrium, acting as 
a reservoir, so that  

1 (25) 
n p h , q  - -  e , ~ . w L o  _ 1 ' 

i.e., the phonon distribution is described by a thermal Bose function. 
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Fig. 4.2. Same as Fig. 4.1 but for the case where only caxrier-LO phonon scattering 
is included. (From 3ahnke and Koch 1995) 

To illustrate the different scattering effects we plot the results obtained 
by solving the carrier-phonon Boltzmann equation alone (Fig. 4.2) and to- 
gether with the carrier-carrier Boltzmann equation (8) (Fig. 4.3). As the LO 
phonon energy 5wLO has a discrete value, the carrier relaxation of an initial 
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nonequilibrium distribution (solid line in Fig. 4.2), which occurs via succes- 
sive emission of LO phonons, leads to the occurence sidebands in the carrier 
distribution at the energies c -  n hWLO ,n---- 1, 2, . . . .  I f  one simultaneously 
includes carrier-carrier scattering, as it occurs under realistic conditions, the 
discrete phonon sidebands are often suppressed, as shown in Fig. 4.3. How- 
ever, now the carrier distributions relax to a Fermi-Dirac distribution at the 
lattice (LO-phonon) temperature .  
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F i g .  4.3. Same as Fig. 4.1 but for the case where additionally also caxrier-LO 
phonon scattering is included. (From Jahnke and Koch 1995) 

In Fig. 4.4 we study a si tuation where the initial carrier distribution is 
basically a Fermi-Dirac distribution, which, however, is locally disturbed in k- 
space. Such a situation is relevant for lasers if we consider e.g. the situation of 
a single mode burning a kinetic hole into the distribution function. Fig. 4.4a 
shows the rapid relaxation of this disturbed distribution function back to 
quasi-equilibrium once the per turbat ion is switched off. Figure 4.4b shows 
the corresponding carrier-carrier scattering rates q',~k defined in Eq. (11). We 
see tha t  typical scattering times are of the order of 50-100fs. 

To get an approximate  expression for the carrier relaxation rate, we con- 
sider a nonequilibrium carrier distribution that  is sufficiently close to the 
quasiequilibrium Fermi-Dirac distributions as in Fig. 4.4. In such a case we 
can set 

i n  i n  
X~k{n ) ~ X'~k{f } , 
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o u t  o u t :  
X~k {n} --~ ~ k  {f} , (26) 

0.5 
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Fig. 4.4 (a). Relaxation of disturbed Fermi distribution functions for electrons 
(top) and holes (bottom) at a density N = 3 x 1018crn -3 and temperature 
T _~ 300 K obtained by numerically solving the Boltzmann equation using the dy- 
namically screened Coulomb potential in RPA approximation. The times axe: t =0 
(long dashed), 21 fs (dotted), 75 fs (dash-dotted), 147 fs (dotted), 796 .Is (solid). 
(From Binder et al. 1992) 

in Eq. (8). Furthermore,  substituting 

in  
Z~k{f}  = ")'ak{f}f~k , (27) 

which is a simple rearrangement  of Eq. (12) under detailed balance condi- 
tions, we find 
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O~ak col Ot ~-- --~/ak {f} [nak - -  fak] (2s) 
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Fig. 4.4 (b). Carrier-carrier scattering rates extracted from Fig. 4.4a, (top) elec- 
trons, (bottom) holes. (From Binder et al. 1992) 

This approximation fails (barely) to preserve the total carrier density N. 
To remedy this defect, we study interactions in the neighborhood of ko, and 
choose ~/~ko{f) instead of 7~k{f}, that is 

an~k _ 
Ot col --~fako {f} [nak -- fak] (29) 

which is the carrier relaxation rate approximation. This expression conserves 
the total carrier density since ~-~k nak = ~ k  fuk ---- V N  (N is the total 
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number of carriers), and is often used to simplify collision terms in the carrier 
distribution equations of motion. 

4.3 Dephasing 

The collision terms in the dynamic equation for the interband polarization 
include such effects as screening of the Hartree-Fock terms and decay of the 
total polarization, i.e., optical dephasing. Using Eq. (16), we can write the 
diagonal part of A_ as 

A k k  = - - i A k  + Fk  , 

and the nondiagonal part as 

(30) 

Akk' ---- iAkk' + Fkk, • (31) 

Since Akk has to be added to Okk, Eq. (3-88), in the full dynamic Eq. (3-81) 
for the interband polarization, we see that formally, ['k describes a momen- 
tum dependent diagonal dephasing rate and Ak yields the corresponding 
corrections (~ V 2) to the Hartree-Fock renormalizations of the free-particle 
energies. 

In the same way, Akk, and F k k ,  yield momentum dependent nondiagonal 
damping and shift contributions. It is interesting to note that 

~k  0pk = -- ~ Akk, Pk' = 0  
--~col kk  ~ 

(32) 

which demonstrates that Coulomb dephasing of the interband polarization is 
a pure interference phenomenon. 

In the following Chap. 5 we discuss the excitation dependent properties of 
excitons in semiconductor quantum wells and in microcavity systems. There 
we will see directly (e.g. Fig. 5.4) how the nondiagonal dephasing contribu- 
tions have the effect of partially compensating the influence of the Fk. Because 
this compensation is significant, it is crucial to treat both diagonal and non- 
diagonal terms symmetrically. The pure dephasing approximation cannot be 
justified at the microscopic level, so that an analysis of experimental results 
based on a purely diagonal description of dephasing can only be regarded 
as a ]it of the microscopic results, with the dephasing rate treated as a phe- 
nomenological input parameter. As such it is important that generally one 
should no t  use Eq. (30) to compute a dephasing rate. Rather, the dephasing 
rate should be chosen to account for the effects of both the Fk and the Fkk, 
contributions. 
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4.4 Screened Hartree-Fock A p p r o x i m a t i o n  

If one wants to treat the nonlinear semiconductor response in a simpler ap- 
proximation without solving the full equations of the previous sections, one 
often relies on an approach whose advantage is that  it is considerably easier 
to implement numerically. This approach involves using a phenomenologi- 
cal relaxation time approximation to describe the carrier and polarization 
relaxation. Furthermore, the effects of plasma screening are included phe- 
nomenologically by replacing the bare Coulomb potential Vq by the screened 
Coulomb potential V,,q. This treatment of screening effects leads to the semi- 
conductor Bloch equations in the screened Hartree-Fock approximation. Note 
that  the Coulomb interaction Hamiltonian with the bare Coulomb potential, 
Eq. (3-67), already contains the mechanism for plasma screening. Therefore, 
one should be concerned that  an ad hoc replacement of Vq with V~,q might 
count some screening effects twice. However, such problems can be avoided 
within a systematic many-body approach. (Binder and Koch 1995) 

The resulting semiconductor Bloch equations in screened Hartree-Fock 
approximation are 

and 

where 

dpk _ 
d~ iw~,kPk -- i[2s,k(Z, t) [riCk + nhk -- 1] -- Feyl,kPk , (33) 

dnek _ i , 
dt ~ [O,,k(z, t)Pk -- O*,k(Z, t)pk] -- (n~k -- f~k) %ko , (34) 

d n h k  _ i 
dt ~ [~2~,k(Z, t)p~ -- ~*,k(Z, t)pk] -- (nhk -- fhk)  7hko , (35) 

and 

k '#k  q#O 
(36) 

The screened Coulomb potential is 

vq (3s) Vs,q - E(q) ' 

where ¢(q) is the longitudinal dielectric function. At the level of a static 
Hartree-Fock approximation e(q) is given by 

E(q) = 1 - Vq E E "/tk-q -- nk 
k a = e , h  Ek-q Ck 

(39) 

1 
f ~ s ' k ( Z ' t ) -  •kE(Z' t )  + 2 Vs,Ik-k' (37) n IPk' 

k':~k 
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This equation is the static Lindhard ]or~mula, which is discussed in detail in 
the literature listed in the references. 
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5 E x c i t o n s  i n  S e m i c o n d u c t o r  M i c r o c a v i t i e s  

In this chapter we apply the results of the previous sections to discuss the op- 
tical properties of semiconductors inside high finesse microcavities, i.e. Fabry- 
Perot type cavities with a length comparable to the light wavelength. We as- 
sume a structure completely made of semiconductor material where the high 
quality mirrors consist of pairs of quarter wavelength thick alternating layers 
of different background refractive index. Such a structure is shown schemati- 
cally in Fig. 5.1. Since many" details of such microcavity systems are discussed 
in the other articles of this lecture note volume, we concentrate here on the 
microscopic theory of excitonic features. In Sec. 5.1 we start at the level of 
a semiclassical theory where we describe the light field classically and use 
for the excitonic response the microscopic theory developed in the previous 
chapters. At this level we can analyze linear and nonlinear absorption, trans- 
mission and reflection properties, (Sec. 5.2). To study also the microcavity 
luminescence (Sec. 5.3), we then introduce also a quantization of the light 
field, yielding the semiconductor luminescence equations. 

5.1 Semic lass iea l  Theory  

Our starting point is Maxwell's wave equation, Eq. (3-19). Using 

we have 

D = E + 47rP (1) 

1 02 47r 02 . 
AE(r, t)  c 2 0 t  2 E(r, t) = ~-  o t  2 P(r, t )  . (2) 

In the following we consider standard quantum-well (QW) systems which are 
grown between larger bandgap buffer material to ensure efficient carrier con- 
finement. In a semiconductor microcavity, the QWs are placed between Bragg 
mirrors which consist of quarter-wavelength dielectric layers, see Fig. 5.1. QW 
buffer layers and mirror layers are usually nonabsorbing and optically inac- 
tive for frequencies close to the QW band edge. Then the light field interacts 
nonresonantly with the QW buffer layers and the mirror layers and reso- 
nantly with the QWs. The nonresonant polarization can be calculated from 
a background susceptibility using 

PB (r, t) = XB (r) E(r, t) 

where XB represents the excitation-independent refractive index 

(3) 

n 2 ( r )  = 1 + 4 - x . ( r )  • (4) 

In the simplest approximation, this refractive index is real and does not 
vary with frequency in the parameter range of interest. For the QWs the 
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Fig. 5.1. Schematics of a planar semiconductor microcavity consisting of two dis- 
tributed Bragg reflectors (DBR), spacer layers, and a quantum well (QW) in the 
cavity. The Bragg mirrors consist of )~/4 layers made of semiconductor material 
with different refractive index. 

resonant interaction of the states close to the band edge is described by the 
QW polarization PQW and the nonresonant interaction with other states is 
included in the background contribution PB, such that  

P = PQW + PB . (5) 

Hence, we can write Eq. (2) as, 

[02  n2(z) 02 ] 47r 02 
~zz2 c 2 0 t  2 E(z, t )  - c2 ot2PQw(z,t) (6) 

where we again assumed light propagation in z direction, i.e. orthogonal to 
the layers of the QWs and Bragg mirrors. 

The QW polarization PQw (z, t) can be calculated from the microscopic 
semiconductor theory outlined in the previous chapters of these lecture notes. 
In the linear regime, it is convenient to introduce a Fourier transformed po- 
larization, 

PQW(Z,t) = / dw e_iW t PQw(z,w) , (7) 
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and similarly a Fourier transformed optical field E(z, w). The spatial exten- 
sion of the QW polarization PQw(z,w) is restricted to the QW layers; the 
z-dependence of PQw(z,w) is determined by the carrier confinement wave 
functions ~(z) in the QW, compare Sec. 2.4. Hence, the QW polarization is 
given by 

PQw(z,w) = PQw(~a) ]¢(z)] 2 • (8) 

The matrix element PQw (w) contains the sum over all possible dipole tran- 
sitions. In a QW Bloch basis with the in-plane carrier momentum k± = k, 
w e  u s e  

1 
PQw( ) = + c . c . .  (9 )  

k 

If the QW polarization depends only linearly on the light field pk(w) obeys 
the equation, 

h(wk -- w -- iT)pk(W) -- #k EQW (w) + ~ Vtk_k,I Pk' (W) , (10) 
k '  

where hwk is the transition energy, compare Chap. 3. Eq. (10) is the Fourier 
transform of Eq. (3-89) for the case of a QW system. The driving term in 
Eq. (10) contains the effective field component that interacts with the QW, 

EQw(w) = / dz E(z,w) I~(z)] 2 . (11) 

Since the light wave length is much larger than the thickness of typical QWs, 
the optical field is practically constant over the QW extension. Therefore we 
can take for Eqw(w) simply the opticM field at the QW position. In the 
linear regime we can relate PQw and EQW by the QW susceptibility X(W) 

PQw(w) ---- X(W) EQw(w) , (12) 

which contains a sum over all excitonic bound and continuum states. 
With Eqs. (8), (11) and (12) a closed integral equation for the optical field 

can be obtained from the wave equation where the properties of the semicon- 
ductor QWs enter only through the independently calculated susceptibility 
X(W) and the confinement wave function ~(z), 

+  n2(z) c 2 2 dz'E(z') I (z')l . 

( 1 3 )  

The main advantage of this equation is that it can be solved analytically for 
a single QW. Formulating this solution in terms of a transfer-matrix, also 
multiple QWs and QWs in a microcavity can be treated. In this approach 
the nonlocal linear QW response, radiative broadening, and coupling effects 
are fully included. 

Since the QW width is small compared to the light wavelength, we can 
u s e  
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I~(z)l 2 = (f(z - zo) , (14) 

where zo is the QW position, on the RHS of Eq. (13). Then the wave equation 
simplifies to 

[ 02 w2 ] ~ z  2 47rw2 c 2 + ~-n2(z)  E(z,w) - X(w) E ( z o , w ) 5 ( z  - zo) • (15) 

In the following we want to obtain a formal solution for light propagating 
normal to the interfaces of the heterostructure. First we consider the situation 
of an interface between two adjacent layers denoted by j and j + 1. Placing 
the interface at z = z0, we can write the field left (L) and right (R) of the 
interface as 

EL(Z,W) = L+e 'qLz + L - e  -*qLz (16) 

and 

ER(Z,W)  = R + e  'qRz + R - e  -zqaz , (17) 

respectively. Here, we decomposed the total field into forward (+) and back- 
ward ( - )  travelling waves and denoted qL/R = WnLc/a, where r i L l  R is the 
refractive index left or right of the interface. 

The conditions 

EL(Z = zo,W) = ER(z = z0,w) (18) 

and 

~ z E L ( z , W ) l z o  = ER(z,w)lzo , (19) 

which have to be satisfied for any normal incident field, yield 

where the transfer matr ix  ~ I  is given by 

- ( 2 1 )  

" ~ / = 2  (1 - ~qL)e iz°(qs+qL) (1 + qRqL)e--iz0(qR--q~, 

Similarly, we can construct a transfer matrix for a QW surrounded by buffer 
material. For this purpose we compute the propagation from the left buffer 
layer into the QW as, 

:M (i +) 
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and from the QW into the right buffer layer as 

such that  

(23) 

Assuming that  the buffer layers left and right of the QW have the same 
background refractive index n and using Eqs. (12) and (14) to characterize 
the QW we obtain 

I + Y  r e  -2iqz°) 
MQw = (25) 

- Y e  2iqz° 1 - Y 

with 

iq 
Y = ~ X ( w )  , (26) 

where e = n 2. From a given transfer matrix )~/QW the transmission t = 
R+/L+ and the reflection r = L_/L+ for an incident wave from the LHS 
can be determined directly. Solving 

for r and t leads to 

- -  
M21 _ i ~ X(w) e2iqzo (28) 
M22 1 - i ~ X(w) ' 

MUM22 - M12M21 1 
= (29) 

M ~  1 -  i ~ x(~)  ' 
t(w) = 

where Mij are the matrix elements of -~/Qw. The advantage of the transfer- 
matr ix formulation is that  it can be easily extended to multiple QWs at 
arbi t rary positions. Since the transfer matrix determines the field coefficients 
on one side of the QW in terms of coefficients on the other side, a transfer 
matr ix for the combined system of several QWs follows from successively 
multiplying the transfer matrices of the individual QWs, 

]VfMQW : ~/[~W " ~[/[~W 1 " ' ' ' "  ~ / ~ W  " )~/fQW , (30) 

where )~/~w (-~/~rw) is the transfer matrix of the outermost left (right) QW. 
Then from Eq. (27) reflection and transmission spectra of the combined sys- 
tem can be determined directly. 
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a) A n a l y t i c a l  So lu t i ons  for  l s - E x c i t o n s  

Restricting the analysis to ls-excitons for this subsection only, we obtain from 
the two-dimensional Elliott formula 

I#c'12 (31) 
X l s  = - - g  ~ .d  - -  E l s  + i3" 

with the ls-exciton energy E l ,  and the nonradiative homogeneous exciton 
broadening 3'. The oscillator strength is determined by the dipole coupling 
matr ix element #cv and the ls wave function entering g = I¢~D(r = 0)l 2. 
Using XI,, we can evaluate the transfer matrix for a single QW, 

1 (32) 
~4QW = hw - EI~ + i3" 

f [hw -- E l s  + i(~/ - F)] - i F  e - 2 i q z °  
× 

i F  e 2iqz° [hW -- S i s  + i(7 + F)] ] ' 

where a radia t ive  broadening,  

F = q g [dc, [2 (33) 
2c 

has been introduced. With Eqs. (32) we can determine the ls-exciton reflec- 
tion, transmission and absorption spectra of a single QW, 

F 2 
R(w) = Ir(w)l 2 = ( ~  _ Els) 2 + (3' + F)  2 ' (34) 

( ~ - E l s )  2 + 3  '2 
T ( w )  = It(w) l 2 = ( h ~ - - - ~ 8 - ~ - + - ( - 7  ~ - F )  ~ ' (35) 

23"F (36) 
A ( w )  = 1 - R ( w )  - T ( w )  = (Sw - E ,8 )  2 + (3' + F)  2 

The appearance of the additional radiative broadening F is a consequence of 
spatial boundary conditions that  have to be satisfied by the solutions of the 
interacting light-exciton system. 

Physically, the radiative broadening of the excitonic resonance results 
from the lack of momentum conservation in the QW growth direction. A light 
field, that  is resonant with the exciton, can propagate in a three-dimensional 
semiconductor as a polar i ton  mode.  The propagation is only limited by the 
intrinsic semiconductor dephasing as well as material imperfections and the 
boundary of the crystal. For the light propagating through a QW, only the in- 
plane momentum has to be conserved. Hence the excited QW polarization can 
decay due to radiation emitted in the forward and backward directions. This 
leads to an additional decay channel which in good samples is the dominant 
one. For GaAs parameters, we obtain from Eq. (33) a radiative lifetime T r a d  : 
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h/F "~ 13 ps. We see from Eqs. (34)-(36) that small radiative coupling F << 
7, the QW transmission approaches unity while reflection and absorption 
vanish. On the other hand, for vanishing dephasing 7, only the absorption 
vanishes. 

Multiple QWs exhibit interesting optical coupling effects. (Stroucken et 
al. 1996; Andreani 1994; Citrin 1996) For two QWs analytical results can be 
obtained by multiplying two transfer matrices (32). Assuming )~/2 distance 
between the QWs (Bragg condition), the reflectivity is given by 

4F 2 
R~/2 = (ttw - Els) 2 + (7 + 2F) 2 " (37) 

In comparison to the single QW, the radiative broadening is enhanced by a 
factor two and the reflectivity at the ls-exciton resonance is increased by a 

factor 4 ~  due to in-phase coupling of the QW fields. For a I / 4  distance 
(3'-I- z I 1~ 

between the QWs (anti-Bragg condition), destructive interference reduces the 
QW reflectivity. The reflectivity spectrum, 

2F 2 2F 2 
R~,/~= (h~,-EI,-F) 2 + ( 7 + F )  2" ( h ~ - E l s + r )  ~ + ( 7 + r )  ~ ' (38) 

contains a product of two Lorentzians each of which is shifted by the radiative 
broadening F. Correspondingly, in the limit 7 < F a double-peak structure 
can be obtained. 

b) Numer ica l  Resul ts  for Single Q u a n t u m  Well 

The QW susceptibility containing all excitonic bound and Coulomb-enhanced 
continuum states can be obtained from a numerical solution of Eq. (10). As an 
example we consider the electron heavy-hole transition of the lowest subband 
for an 8 nm GaAs QW. In this case, the exciton binding energy is about 2.4EB 
where EB is the three-dimensional binding energy and 4EB is the binding 
energy in perfectly two dimensional system. 

The reflection, transmission and absorption spectra for a single QW with 
dephasing 3' = 0.05EB are shown in Fig. 5.2a. At the ls-exciton resonance, 
the transmission is reduced and reflection as well as absorption is possible. 
When we compare the natural logarithm of the transmission with the imag- 
inary part of the susceptibility in Fig. 5.2b, we see a small deviation due to 
radiative broadening. This deviation is enhanced for smaller dephasing or due 
to the radiative coupling between multiple QWs (Stroucken et al. 1996). 

c) Exci tons  in a Microcavi ty  

The linear treatment of the light propagation in QWs and multiple QWs can 
be readily extended to QWs in a semiconductor microcavity. The distributed 
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Fig. 5.2 (a). Computed reflection, transmission and absorption spectrum of a 8nm 
GaAs quantum well. 
Fig. 5.2 (b). Comparison between the logarithm of the transmission and the imag- 
inary part of the susceptibility. (Jahnke et al. 1997) 

Bragg (DBR) mirrors consist of quarter-wavelength layers with al ternating 
refractive index. For every surface between two mirror layers we use the 
transfer matrix,  Eq. (21). By multiplying the matrices of the dielectric layers, 
a transfer matr ix  for both  DBR mirrors of a microcavity can be obtained. The 
successive multiplication of the transfer matrices for the first DBR mirror, 
the QWs and the second DBR mirror leads to a transfer matr ix  for the 
microcavity. 

The resulting semiclassical t rea tment  of the light propagation,  tha t  incor- 
porates a linear QW susceptibility, describes the coupling between the exciton 
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Fig. 5.3 (a). Reflection spectra of a microcavity with different number of quantum 
wells. (Dashed line = 4 QW, solid line = 2 QW, dotted line = 1 QW). The inset 
shows the corresponding spectra of the quantum-wells without the Bragg mirrors. 
Fig. 5.3 (b). Reflection spectra ofa microcavity with two quantum wells and differ- 
ent number of mirror layers: (left/right) solid line (14/16.6), dashed line (10/12.5), 
dotted line (6/8.5). The inset shows the cavity mode without the quantum wells• 
(Jahnke et al. 1997) 

resonance and the single cavity mode. This normal mode coupling (NMC) re- 
sults in a double peaked resonance structure in linear reflection, transmission 
and absorption spectra. Fig. 5.3 shows examples of linear normal-mode spec- 
t ra  which are calculated numerically from the susceptibility of the 8 nm QW 
shown in Fig. 5.2, and the microcavity transfer matrix. We consider a cavity 
with two Bragg mirrors of 99.6% reflectivity. The first mirror (exposed to air) 
and second mirror (on a GaAs substrate) contain 14 and 16.5 quarterwave 
pairs of GaAs (n=3.61) and AlAs (n=2.95), respectively. A ~)~ GaAs spacer 
between the mirrors leads to two central anti-nodes of the static cavity field. 
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For the solid line in Fig. 5.3a, in each of the cavity anti-nodes a single 8 nm 
Ino.o4Ga0.98As QW is located. For two QWs in every field anti-node (dashed 
line), the larger oscillator strength of the QW system leads to an increase 
of the normal-mode splitting by a factor x/~. If only a single QW is placed 
in one of the two cavity anti-nodes (dotted line), the normal-mode splitting 
is reduced by a factor l/v/2. The corresponding reflectivity of the QW(s) 
without microcavi~y is'shown in the inset. In Fig. 5.3b we compare cavities 
with two QWs (a single QW in each of the two cavity anti-nodes) and a 
reduced number of mirror layers. For 6 and 8.5 quarterwave pair layers and 
a reflectivity of 88.3% and 86.0%, respectively, normal-mode coupling is still 
possible (dotted line). However, due to broadening of the cavity resonance 
(shown in the inset) the normal-mode peaks are strongly washed out. 

d) Incoherent Exciton Saturation 

After the discussion of the linear optical properties of QW inside and out- 
side a semiconductor microcavity we now analyze a pump-probe situation. 
Assuming a pump pulse that generates carriers by exciting the system in the 
ihterbaad transition region, we have to compute the linear response to a weak 
probe field in the presence of incoherent electron-hole pairs. 

For a sufficiently long time delay between the electron-hole-pair gener- 
ation and the weak optical probe pulse, carrier-carrier and carrier-phonon 
scattering leads to equilibration of the carriers within their bands so that we 
can make the quasi-equilibrium approximation. For the polarization we then 
have to solve Eq. (3-81) in the form 

dpk 
d-T - -  i w k P k  -- i ~ k  ( f e k  -k f h k  -- 1) - ~ Akk 'Pk' (39) 

k'  

with Akk, given by Eqs. (4-14) - (4-17), with n~k replaced by f~k. 
As an example we show numerical results for the saturation of the ex- 

citonic susceptibility in the presence of a free-carrier plasma. Fig. 5.4 (left) 
shows the computed exciton spectrum for a given carrier density (101°cm -2) 
and temperature (77 K). The solid line is obtained if all correlation terms in 
Eq. (39) are considered. For comparison, the dashed line shows the result if 
exchange contributions oc VqVlk-k,+ql are neglected in the scattering terms 
Akk,. Then the broadening increases by almost a factor of two. In the pure 
dephasing limit, where only the diagonal contributions are considered and the 
off-diagonal contributions in Akk, are neglected, the broadening is strongly 
overestimated (dotted line). Hence, we see clearly, how the off-diagonal de- 
phasing compensates diagonal dephasing to a large extent. 

In Fig. 5.4 (right), the full calculation is compared with the approximation 
of a constant damping rate V- For a small carrier density (101°cm -2) the 
full calculation (thick solid line) can be fitted by a constant dephasing rate 
V = 0.05EB (thick dashed line). Increasing the carrier density to 1011cm -2, 
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Fig 5.4 (left). Imaginary part of the quantum-well susceptibility showing the in- 
fluence of the different contributions to the polarization decay. The solid line shows 
the result of the full calculation, the long dashed line is computed by dropping the 
exchange terms in the different contributions to Eqs. (4-13), and the dotted line 
shows the result obtained by neglecting the non-diagonal contribution, Eq. (4-17). 
Fig. 5.4 (right). Comparison of the full solution with a constant dephasing ap- 
proximation for the densities 101°cm -2 (thick lines) and 1011cm -2 (thin lines). 
(Jahnke et al. 1996) 

we obtain with constant damping and static screening the well-known but 
unphysical shift of the ls-exciton whereas the full dephasing calculation does 
not exhibit this shift. For the higher carrier density and the same constant 
damping, the height of the ls-exciton peak is only reduced by a factor of 
about 2.5 due to phase-space filling and screening. If the increased broadening 
is also taken into account within the full calculation, the height of the ls- 
exciton peak is reduced almost by an order of magnitude. Figure 5.5 (top) 
shows the saturation of the ls-exciton for increasing plasma density computed 
within the full dephasing model. These results are in good agreement with 
experimental results (Jahnke et al. 1996). 

To compute the optical response for a microcavity containing QWs, we 
use the QW susceptibility within our transfer-matrix calculation for the mi- 
crocavity design. As an example we consider a cavity with a 3,k GaAs spacer 
between GaAs/A1As mirrors. For the top mirror (exposed to air) and bot- 
tom mirror (on a substrate) a reflectivity of 99.6% is obtained with 14 and 
16.5 quarterwave pairs. A single 8 nm Ino o4Gao.9~As QW is placed in each 
of the two cavity anti-nodes. The cavity wavelength is chosen to coincide 
with the ls-exciton resonance of the QWs. The calculated microcavity trans- 
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Fig. 5.5 ( top).  Computed saturation of the quantum-well exciton resonance for 
different incoherent carrier densities. 
Fig. 5.5 (bo t tom) .  Corresponding reduction of the normal mode resonances of 
the quantum-well microcavity system. (Jahnke et al. 1996) 

mission is shown in Fig. 5.5 (bottom). At low excitation levels we again see 
the double-peaked transmission characteristic for the normal mode coupling 
(NMC) between exciton and cavity resonance. For increasing bleaching of the 
ls-exciton resonance with increasing carrier density, we find a strong reduc- 
tion of the NMC peak-height with only small reduction of the NMC splitting. 
The reduced transmission and the increasing width of the individual NMC 
peaks indicate the strong broadening of the exciton resonance, whereas the 
small reduction of the splitting clearly reveals the minor reduction of the ex- 
citon oscillator strength within a large plasma density range. With  increas- 
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ing plasma density the renormalized band edge approaches the energetically 
stable ls-exciton resonance. The rather abrupt replacement of the NMC dou- 
blet by a single transmission peak occurs when the exciton resonance is fully 
bleached and the cavity resonance becomes degenerate with the band edge. 

5.2 N o n l i n e a r  E x c i t o n  S a t u r a t i o n  

As the first step towards the treatment of the nonlinear light propagation 
problem in QWs and microcavities, we use the full semiconductor Bloch 
equations with the microscopic carrier relaxation and dephasing terms dis- 
cussed in the previous chapter. In the following, we combine this model with 
a solution of the wave equation (6) for the optical field that  describes the 
nonlinear field dynamics. For time-dependent linear studies or for a nonlin- 
ear field dependence of the polarization, it is convenient to solve the wave 
equation directly in the time-domain. 

We assume a sequence of narrow QWs for which the time dependent 
polarization can be written as 

PQW(Z, t )=  ~-'~ PQw, i(t) 5 ( z -  zi) , (40) 
i 

where PQW, i is the polarization of the QW at position zi. For this case, the 
analytical solution of the wave equation (6) can be obtained in Fourier space. 
Introducing the expansion 

, /  
E ( z ,  t )  - (271.) 2 dq do) e i ( q z - w t )  E ( q ,  w) , (41) 

the Fourier coefficients obey the equation 

4 ,  w 2 (42) 
E(q,w) - c2q~ _ w2n2 E PQw,,(w) e -iqz' 

i 

With the residue theorem, this leads to the space-time domain solution 

E ( z , t )  : ---2" P w,,(t nlz - + E°±(t 3= (43) 
nC . 

Since we need the general solution of the inhomogeneous wave equation 
(z) we have added the general solution of the homogeneous wave equation, 
C i E [  (t 3= z) describing free incident waves. 

As a first example, we discuss the light propagation through a single QW 
at z = 0. An incident wave is applied on the QW in the forward direction 
choosing C + -- 1 and C -  = 0. The inhomogeneous solution describes the 
QW emission as forward and backward traveling waves for z > 0 and z < 0, 
respectively, as can be seen from 
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__0 ]z -_ zi]) = f o PQw(t - ~) z > 0 (44) 

Ot PQw(t c ~ ~ PQw(t + ~) z < 0 

The transmitted and reflected fields, E + and E - ,  can be found by taking the 
forward propagating component of the solution for z > 0 and the backward 
propagating part of the solution for z < 0. Together with the field at the QW 
position we obtain 

z go+( t _ z ) _ 2 ~ o  . z) 
E + ( t -  c ) = c ~c'~t P Q W ( t -  c ' 

z 21r 0 . z) 
E - ( t + c ) -  ~ c ~  p Q W ( t + c  ' 

27~ 0 
EQw( t )  = Eo(t) - -~c-~ PQw(t)  . 

(45) 

(46) 

(47) 

For the transmitted and reflected field components of a system of several 
QWs Eq. (43) yields 

z E + ( t - z  2~r ~ 0 z - z i  
E + ( t -  c ) = c ) - n--c i=1 ~-~ PQw, i(t c 

) (48) 

(, ÷ o z:z,  
c n-"c ~ PQw, i(t + • (49) 

i = l  

a) Numer ica l  Resul ts  for Single Q u a n t u m  Well 

As an application we first investigate the saturation of the excitonic resonance 
in a single QW. For this purpose we show in Fig. 5.6a the time evolution of 
the QW polarization for propagation of a 100 fs laser pulse through a single 
8 nm GaAs QW. Using a small Rabi energy /2R = pevE of an externally 
applied pulse, the solution remains in the linear regime and the polarization 
decay is governed by the background damping. The temporal oscillations in 
the polarization are quantum beats between the excitonic resonances, most 
prominently the is-resonance and the higher states. At elevated pulse en- 
ergies, enhanced polarization decay is obtained from increased efficiency of 
carrier and polarization scattering. This is the phenomenon of excitation in- 
duced dephasing. The calculated spectra of the transmitted pulses are shown 
in Fig. 5.6b. Similar to the case of quasi-equilibrium excitation, bleaching of 
the exciton transmission occurs basically without any shift of the ls-exciton 
resonance. 
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Fig. 5.6 (a). Time dependent polarization in a quantum well after resonant exciton 
excitation with a 100 fs laser pulse of different Rabi energy f2R = #E. 
Fig. 5.6 (b). Corresponding quantum-well transmission spectra. (Jahnke et al. 
1997) 

b )  M i c r o c a v i t y  R e s u l t s  

Using the nonlinear theory, we can study the saturation of the excitonic 
normal-mode coupling (Jahnke et al. 1997). Calculations of the time-resolved 
reflected signal for increasing intensity of the applied 100 fs pulse are shown 
in Fig. 5.7. We see that the time dependent polarization exhibits oscillations 
which are the real-time counterpart of the appearance of the normal-mode 
resonance doublet in the frequency domain (inset to Fig. 5.7). The modu- 
lation depth of the polarization oscillations decreases with increasing inten- 
sity, whereas the oscillation period is basically excitation independent. These 
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t ime domain results are then consistent with results such as those in Fig. 5.5 
showing the excitation dependent saturation of the normal-mode resonances 
without loss of excitonic oscillator strength. 
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Fig. 5.7. Reflected intensity as function of time after excitation of a microcavity 
with a 100 fs pulse and different Rabi energies ~n = 0.0lea (solid line), /2R = eR 
(dotted line) and ~2R -- 2eR (dashed line). The inset shows the corresponding 
reflectivity spectra. [Jahnke et al. (1997)] 

5.3 M i c r o c a v i t y  L u m i n e s c e n c e  

So far, we have used semiclassical theory, where the medium is t reated quan- 
tum mechanically but  the electromagnetic radiation is modelled as a classi- 
cal light field. This approach is usually well justified as long as the classical 
fields exceed the vacuum fluctuations, which are almost always much smaller 
than the weakest probe beam. However, photoluminescence is an important  
phenomenon which cannot be explained semiclassically. The results of the 
previous sections, e.g. Figs. 5.6 and 5.7, show that  without external driving 
field the polarization and the coherent microcavity field E = (E) decay away 
typically on a ps t ime scale after the excitation pulse. However, in many cases 
a substantial number of incoherent electrons and holes remains excited in the 
system. The system can then reach its ground state via non-radiative electron- 
hole recombination or radiatively through spontaneous emission leading to 
photoluminescence out of the quantum well. 

A quantum treatment  of light is required to describe photoluminescence 
because the field has nonclassical properties, e.g., (E) = 0 but  (EE) ~ O. The 
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fully quantum mechanical analysis of the interacting photon-semiconductor 
electron-hole system poses a considerable challenge to current theories. In 
the semiclassical calculations, the major difficulties arise from the consistent 
inclusion of carrier-carrier Coulomb interaction effects. In addition to that 
we now need a fully quantum mechanical theory for the interacting carrier- 
photon system. A detailed description of the semiconductor luminescence 
quantum theory is beyond the scope of these lecture notes and will be pub- 
lished elsewhere (Kira et al., to be published). 

Here, we merely present the basic results and discuss the intuitive physics 
behind the results. To avoid a mixture of coherent and incoherent effects, 
which is an interesting subject on its own, we focus on the theoretical analysis 
of photoluminescence experiments where carriers are non-resonantly gener- 
ated in the QW by optical excitation high above the semiconductor bandedge. 
Hence, there is no coherent field or intraband polarization generated in the 
vicinity of the exciton resonance and we can use 

Pk = O, (dq(t)) = 0 , (50) 

where dq is the destruction operator of a photon in the mode q. As discussed 
earlier, an initially generated distribution of electrons and holes rapidly re- 
laxes into quasi-equilibrium Fermi-Dirac distributions within the respective 
bands. Hence, we only need dynamic equations for the photon operators and 
the operator for the semiconductor interband polarization. Since we are in- 
terested in the photoluminescence intensity spectrum, we want to compute 
the quantity (d+dq)(t). Using the light-matter coupling Hamiltonian 

U~-m oc ~ (A~,k d+qak+qb-k + h.c.) , (51) 

we obtain from the Heisenberg equation of motion 

, 9  

ih~tt (d+ dq, ) = h (xq, - wq) (d+ dq, ) 

+ iFq ~pcv(a+,b+k,dq,)  + iFq, ~#* , , (d+b_k ,ak , )  , (52) 
k '  k '  

where Fq is the effective mode strength at the QW position. Eq. (52) shows 
that the expectation value (d+dql is driven by terms containing light-matter 
correlations like (d+qakb_kl. The dynamic equations for these correlations 
include Coulombic many-body contributions which once again lead to the 
hierarchy problem of continuous coupling to correlation functions of higher 
order. To obtain a closed set of equations we therefore have to use the trun- 
cation schemes discussed in the previous chapter of these lecture notes. At 
the Hartree-Fock level we obtain the coupled equations 

) 
+ (nek + nhk -- 1) F2(k, q) + neknhkF2sE(k, q) , (53) 
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and 

ih~n~k = - - 2 i E I m  [#cv~Fq(dqPk)], c~ = e,h . (54) 
q 

Equations (52)-(54) give a closed set of semiconductor luminescence equations 
with the renormMized stimulated emission/absorption term 

f2(k'q) = Pcv (~q ' iFq'(d+q'dq')- E#*cv(d+b-k'ak'))k' 

+ E  ' + ' ' Yk-k (dq ak b-k ) (55) 
k '  

similar to the renormalized Rabi energy of a classical field, Eq. (3.85). In 
Eq. (53) the rate of spontaneous emission is given by 

J2sE(k, q) = iFq#~.. (56) 

The correlation (d+qakb_k) gives the amplitude of a process where an 
electron-hole pair, having zero center of mass momentum, recombines by 
emitting a photon with vanishing in-plane momentum. Even if the field- 
particle and the field-field correlations are initially taken to be zero, cor- 
relations start to build up because of the t e r m  Itekrthkff2sE(k , q) in Eq. (53). 
This driving term is directly associated with spontaneous emission triggering 
the recombination process. According to the factor neknhk , the spontaneous 
recombination takes place only if an electron and hole are present simulta- 
neously. The stimulated emission/absorption f2(k, q) strongly influences the 
photoluminescence spectrum, such that the resulting photoluminescence re- 
flects the dynamic interplay of the field-field and field-particle correlations 
affected by the elementary processes of spontaneous emission and stimulated 
emission or absorption. 

The semiconductor luminescence equations partially resemble the semi- 
conductor Bloch equations describing the interaction of classical fields with 
the semiconductor. The semiclassical calculation used in the previous sec- 
tions of this chapter includes screening and dephasing due to carrier-carrier 
scattering and polarization scattering, which are beyond the Hartree-Fock 
approximation. Such a fully microscopic calculation of photoluminescence 
remains a major challenge for the future. However, since the full quantum 
theory can be reduced to semiclassical calculation, these effects can be de- 
scribed relatively well, at least for incoherent excitation, using the screened 
Hartree-Fock approximation (see Sec. 4.4) and a dephasing rate which is ex- 
tracted from an independent quantum kinetic calculation. This simplifies the 
quantum calculations considerably. 
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a) N u m e r i c a l  R e s u l t s  for  S ingle  Q u a n t u m  Wel l  

As a first application we compute the steady-state luminescence spectra of 
a single 8 nm QW for various carrier densities. The results are shown in 
Fig. 5.8a in direct comparison with the corresponding absorption spectra, 
Fig. 5.8b. We see that  the photoluminescence spectra have their maximum 
close to the excitonic absorption peak. Furthermore, the QW luminescence 
stays peaked for much higher carrier densities than the excitonic absorption. 
Even for relatively high densities, where the excitonic resonance has van- 
ished from the absorption spectra, the semiconductor luminescence remains 
peaked, however, it gradually becomes asymmetric. 
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Fig. 5.8. Computed quantum-well luminescence (a) and absorption spectra (b) 
for different electron-hole plasma densities (Kira et al. 1998) 

b)  M i c r o c a v i t y  R e s u l t s  

Next we compute the luminescence for QW inside a microcavity. In Fig. 5.9 
we show examples of calculations for different detunings z2 between cav- 
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Fig. 5.9. Computed luminescence spectra for different detunings A between cavity 
and exciton resonance. The carrier densities are 2.1, 1.7 and 1.25 x 10Ucm -2 from 
top to bottom. (Kira et al. 1998) 

ity mode and exciton resonance, clearly demonstrating double peaked emis- 
sion. For different excitiation levels the relative height of the emission peaks 
changes. In particular, we note that for positive detunings (A > 0), the high 
energy peak gradually overtakes the low energy peak. After its experimental 
observation this nonlinear behavior has led to erroneous speculations concern- 
ing excitonic condensation effects. However, in reality we can understand the 
nonlinear microcavity luminescence under incoherent excitation conditions in 
detail at the level of theory presented here simply by analyzing the different 
microscopic contributions to the spontaneous emission in a microcavity (Kira 
et al. 1997). These investigations show that the nonlinear luminescence prop- 
erties of QW in microcavities under incoherent pumping conditions result 
from the interplay between phase-space, renormalization and light-coupling 
contributions in the interacting electron-hole-photon system. 

Generally, the fully quantum mechanical theory can serve as starting point 
for even more elaborate treatments, e.g. of photon correlation effects, dynamic 
luminescence properties and the intricate interplay between coherent and 
incoherent excitation and emission properties. Work along these lines is in 
progress as well as attempts to include additional effects, such as the influence 
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of phonon coupling, admixture of radiative and guided/evanescent modes as 
well as scattering of carriers by static disorder. 
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L E C T U R E  I 

1 M o t i v a t i o n  

For the past 50 years, semiconductor physics has played a vital role in al- 
most every aspect of modern technology. Advances in this field have allowed 
scientists to tailor the conducting properties of certain materials and have ini- 
t iated the transistor revolution in electronics. New research suggests that  we 
may now be able to achieve similar accomplishments with light. The  key ties 
in the use of a new class of materials called photonic crystals (Joannopoulos 
et al. 1995). 

The underlying concept behind these materials stems from early work by 
Yablonovitch (1987) and John (1987). The basic idea is to design materials 
tha t  affect the properties of photons in much the same way that  solids affect 
the properties of electrons. From a practical point of view, there are many 
instances where one would like to replace the electron with the photon in 
technological applications. A photon is faster than an electron and suffers 
fewer losses because it interacts much more weakly than an electron. Of 
course, this "weak" interaction is also responsible for the difficulties which 
arise in trying to control light. 

In a semiconductor or metal, the electronic structure is determined by the 
nature of the atomic potential and the periodicity of the solid. For photon 
modes, it is the dielectric response of a material that  determines their prop- 
erties. Thus let us examine what happens if we have a periodic arrangement 
of macroscopic homogeneous (for simplicity) dielectric media, i.e. a "pho- 
tonic crystal". There will be many parallels between our discussion and the 
language of elementary quantum mechanics. 

2 T h e  M a s t e r  E quat i on  

The equations that  govern all of macroscopic electromagnetism including the 
propagation of light in a photonic crystal are of course Maxwell's equations: 
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V . B  = 0 (1) 

V .  D = 4 r p  (2) 

1 0 B  
V x E + -  = 0 (3) 

c Ot 
10D 

V x H . . . .  4~._._A (4) 
c Ot 

In the absence of free charges and currents, p = J = 0. Next we consider 
the constitutive equations which relate D to E and B to H.  For example, 
quite generally: 

D~ = E eij(r ,w)Ej + E X ~ j k E j E k  + O(E a) + . . .  
j j,k 

But for many  dielectric materials, it is a good approximation to assume: 

(5)  

1. Non-linear terms are negligible, ~ X = 0; 
2. Isotropic macroscopic media, ~ e is a scalar; 
3. No losses, ~ e is purely real; 
4. Weak w dependence of e. Instead we simply choose the value of e appro- 

priate to the frequency of interest, i.e. the w-dependence of e is slowly 
varying. 

Wi th  those assumptions,  D(r) = e(r)E(r) & H(r)  = B(r)  [# = 1], so tha t  

V . H ( r , t )  = 0  (6) 

V .  e(r)E(r, t )  = 0  (7) 

10H(r , t )  
v × E ( r , t )  + - -  - 0  ( s )  

c Ot 

V × H(r , t )  e(r) OE(r,t) 
c 0 t  - o  (9) 

The last two equations above are reminiscent of coupled t ime-dependent  
Schr6dinger-like equations. So as in the case of the Schr6dinger equation, 
let us proceed to derive a t ime-independent equation tha t  describes the sta- 
t ionary solutions. Since Maxwell's equations are linear, any solution can be 
expanded in terms of the s ta t ionary states. We thus seek an equation tha t  
describes solutions of the form: 

H(r, t) = H(r)e  i~t E(r, t) = E(r)e ~ t  

Substi tut ion of (10) into (6) and (7) gives at once 

V . H(r)  = V . D(r) = O. 

(10) 

(11) 
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Thus the fields are built up of waves that are transverse. For example, if 
H ( r )  = ~-~.q hqe iq'r, then V . H = 0 =~ ~ q  iq . hqe ~q'r = O, Vr ~ q . hq = 0 =~ 
q _L hq. Substitution of (10) into (8) and (9) gives 

V x E ( r )  + ~ H ( r )  0 V x H ( r )  - e ( r )E ( r )  = 0 (12) 

If we now take V× of the 2nd equation in (12) and substitute for the 1st, 
we get, 

~7 x x H ( r )  ( ) 2 H ( r )  with V.  H = 0 (13) 

This is the Master Equation. Once we know H ( r )  we can get E ( r )  (or D ( r ) )  
from equation (12) via 

E ( r ) = (  w~-r)iC ) V × H ( r )  (14) 

Note that (13) is just an eigenvalue problem! Moreover, the operator O = 
V x 1V× is a linear Hermitian operator and thus reminiscent of the Hamil- 
tonian for electrons. Thus all the beautiful properties of eigenfunctions of the 
Hamiltonian follow for the solutions H(r). That is: 

1. they have real eigenvalues (also for O we can show they are all positive); 
2. they can be made orthogonal; 
3. they can be catalogued by their symmetry properties; 
4. they can be obtained by a variational principle. 

At this point the reader may wonder why we have put everything in 
terms of the magnetic field rather than the electric field. The corresponding 
eigenvalue problem for the electric field is a generalized Hermitian problem 
rather than the simple Hermitian problem obtained for the magnetic field. 
The source of the asymmetry between E and B was our approximation of 
constant magnetic permeability but varying dielectric constant, but this is a 
very good approximation in most materials. 

2.1 Trans la t ional  symmet r i e s  

Let us now examine the effects of discrete translational symmetry (i.e. a 
crystal) on the eigenfunctions of O. The fact that we have a crystal (an 
infinite discrete, periodic system) can be expressed by 

= + R) v n  • {R} (15) 

The {R} are called lattice vectors. For a simple 1D system of dielectric spheres 
in air separated by distance a, the {R} = { m a }  with m = 0, +1, +2, etc. 
The vector a is called a primitive lattice vector and defines a primitive unit 
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as we have already alluded to in the case of transversality of our fields, to 
think in terms of expansions of waves, i.e. {eiq'r}. Thus, let us consider the 
consequences of periodicity on the Fourier transform of e(r): 

e(~) = ] ~  eqe ~q~ : ~(T + R) : e ~qR ~ ~ e  ~ r  = e'q Re(~) (16) 
q q 

thus, 

e {~R : 1 v{R}  (17) 

This severely restricts the set of q for which % # 0} It turns out tha t  to 
satisfy (17) VR, q must be of the form 

q = mlbl  + m2b2 + m3b3; {mj}  integer (18) 

with 

bl = 27r a2 x a3 and b~ • aj = 27r6 i j  (19) 
a l  " a 2  x a 3 

where 

R = mla l  + m2a2 + m3a3; {mi} integer (20) 

The set of ~ j  mjbj =- G are called reciprocal lattice vectors because they 
define a crystalline lattice in reciprocal space. Thus any periodic function 
satisfies 

f ( r )  = E eiG'rfa (21) 
G 

We shall discover shortly that  just as in real space, we can describe a crystal 
simply by looking at its primitive cell, in reciprocal space we can describe 
all the solutions of (9 by looking into a primitive cell of the reciprocal lattice 
spanned by bi. 

Lets us now return to the problem at hand, what are the effects of peri- 
odicity on the eigenfunctions H(r)  of (9? 

Given that  e(r) = e(r + R) VR, let us define OR = e - R ' v  such that  
ORe(R) = e(r - R),  then (9 commutes with the discrete translation operator 
OR 

[On, O ] = O  wi th  OR=-e  -R ' v  and O R f ( r ) = f ( r - R )  (22) 

Thus, as we recall from our Q.M., the eigenfunctions of (9 can be chosen to 
be simultaneous eigenfunctions of OR and the eigenfunctions of OR are much 
easier to deal with. So let's build on this idea. 

Let Ck be an eigenstate of OR with eigenvalue ik ,  i.e. 

ORCk ---- AkCk (23) 
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Now since [OR, O ]  = 0,  w e  have, 

OR(O¢k) = O(OR¢k) = Ak(O¢k) (24) 

Thus OCk is also an eigenvalue of OR with the same eigenvalue Ak. If there 
are degenerate states Ck ~ with eigenvalue Ak, then 

o¢~ = E c~,~¢~ (25) 
z 

Thus O can be diagonalized in the subspace Ck ~ and the eigenfunctions H(r)  
can be labeled by k and satisfy: 

(26) 

Thus any eigenstates of O (even degenerate ones) can be chosen to satisfy 

ORHk(r) = AkHk(r) = Hk(r - R) (27) 

Now what is ,kk? A convenient set of complete orthogonal eigenfunctions of 
OR are simply the set e ik~. Thus 

O R e  ik'r ~- e - i k ' R e  ik'r with Ak : e - i k 'R  (28) 

(Note that  the subspace ¢~ in this case is just ei(k+G)'rVG.) Call this subspace 
S k for each k. The vectors k can be taken to lie within the first Brillouin 
zone of the reciprocal lattice, which is just one maximal set of vectors with no 
two differing by a reciprocal lattice vector (since S k = Sk+ G for a reciprocal 
lattice vector G). 

In order to diagonalize O and find the modes of the master equation, we 
only need to diagonalize within these countably infinite subspaces of plane 
waves S k. The resulting eigenstates will be combinations of plane waves 
e i(k+a)'r, and will not be plane waves themselves but instead of the form 

Hk (r) = eikruk (r) (29) 

where uk(r) is periodic in the real space lattice. Substitution of this form into 
the master equation gives the reduced master equation 

1 . w(k) 2 
(ik + V) x -7-~(,k + V)uk(r) = uk(r). 

c 2 err) 
(30) 

This equation can be solved numerically for all k in the first Brillouin zone 
to give the photonic bands, wn(k), of the crystal. 
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2.2 Rotational symmetries 

The region of the Brillouin zone which needs to be studied can be further 
reduced by other discrete symmetries. Discrete rotational symmetries of the 
photonic crystal are also symmetries of the reciprocal lattice, so that  only an 
irreducible sector of the B.Z. need be studied. Let's look explicitly at some 
rotat ion operator OA corresponding to the rotation A E 0(3)  (proper and 
improper rotations allowed). Since A is a symmetry element of the photonic 
crystal, [OA, (9] = O. If Hk is an eigenstate of O, then it follows from 

2 

O(OAgk) = OA((gHk) = ~22 (OAHk) (31) 

tha t  OAHk is also an eigenstate of O. Now we show OAHk is the Bloch 
state HAk. If On is the translation operator by a lattice vector R, OnOA = 
OAOA-1R  and 

O R ( O A H k )  = O A O A - 1 R H  k -~ O A e - i k A - I R H k  = e - iAk 'R (OAHk) .  (32) 

It follows immediately that  wn(k) = wn(Ak), so that  the bands need only be 
found within the B.Z. reduced modulo A. This defines the so-called irreducible 
B.Z. 

Let  us now examine mirror symmetry in a little more detail. In a two- 
dimensional periodic photonic crystal (i.e., one with continuous translational 
symmetry  in the z direction, or no z direction at all), mirror symmetry 
through the plane z = 0 leads to a useful separation of modes into two 
symmetry  classes. Let OM be the operator for mirror reflections M through 
the plane. Since OM 2 = 1, 

OM Hk(r) = eiC HMk. (33) 

If M k  = k (k is in the plane), the eigenvalues of OM are +1. So MHk(r) = 
=kHk(r). From Maxwell's equations MEk(r) = ±Ek(r). Since E transforms 
like a vector and H like a pseudovector, there are only two classes: even 
(A = +1), with nonzero Ex, Ey, Hz, and odd, with nonzero Ez, H=, Hy. We 
assumed in the above that  Hk was nondegenerate, but  in the degenerate case 
combinations of states can be chosen to satisfy the classification. Thus for all 
two-dimensional photonic crystals at kz = 0, all modes are either even (TE) 
or odd (TM), with electric and magnetic fields transverse to the mirror plane 
normal, respectively. 

3 S c a l e  I n v a r i a n c e  

Maxwell's equations for macroscopic media have no fundamental length scale, 
and consequently neither does the master equation. Suppose we know the 
modes for dielectric function e(r). Then for dielectric function d( r )  = e(r/s) 
the master equation is 
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( ) ,5 1 V ~ - H ' ( r ) .  V ×  e(--~/s) × H ' ( r )  = (34) 

But  if H,~(r) are the solutions of the original equation with frequencies w,~, 
then the solutions of the primed equation are just H~(r) = Hn(r/s) with 

t ~ OJn/8.  02 n 

This scaling is of considerable practical use. For instance, in order to 
understand how a structure behaves at micron length scales, the structure can 
be built at millimeter scales and its bands measured, then scaled. Calculations 
need only be performed at one length scale in order to understand the band 
structure at all scales. Losses, nonlinearities, and other phenomena ignored in 
these approximations may break the scale invariance slightly, but  it remains 
a useful theoretical and experimental property. 

L E C T U R E  II 

4 T w o - d i m e n s i o n a l  R e s u l t s  

In the last lecture we developed a simple formalism for modes in photonic 
crystals by analogy with quantum mechanics. The resulting equations can be 
analyzed by the same techniques used to analyze electron bands in periodic 
potentials (e.g. Meade et al. 1993). So far our methods are exact within the 
assumptions listed above and we expect good agreement with experiment. 
In this lecture we will t ry  to develop some intuition about how the photonic 
bands are determined by the periodic dielectric structure. 

Figure 1 shows the measured transmission spectrum (Robertson et al. 
1992) of a macroscopic crystal of dielectric rods in air with rod diameters 

1 mm, and inter-rod spacing ~ 2 mm. There are about 175 rods in the 
experimental setup. We are interested in the propagation properties of light 
through this crystal in the plane kz = 0. Recall that  such modes can be 
classified as T E  (electric field in plane) or T M  (magnetic field in plane), 
depending on their behavior (even or odd) under reflection in the x - y plane. 
The spectrum was obtained using COMETS (Coherent Microwave Transient 
Spectroscopy). Note that  some theoretically predicted photonic bands do not 
show up in the experimental data. These bands are actually there in the 
system but  cannot be coupled into by this particular experiment. 

In Fig. 2 we show the complete photonic band structure. Note that  for 
the T E  modes there are solutions at every frequency w, while for the T M  
modes there is a range of w values for which no T M  modes exist. This is a 
photonic band gap. In order to understand why there is a gap for T M  modes 
but  not for T E  modes, we develop a variational form of the master equation. 
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Theorem:  The eigenmodes of the master equation (13) are stationary points 
of the functional 

1 IV x H(r)l 2 (35) E/(H)  -- d3re- ~ 

within the space of functions H(r) of fixed norm 

d3r H2(r) C. (36) 

The functional is minimized by the lowest-frequency mode, and succes- 
sively higher modes are minima in the subspace orthogonal to the previous 
modes. This is the analogue of the functional f VI~,I 2 + h2(V¢)2/2m which 
reproduces SchrSdinger's equation. Since V x H ~ D, it is convenient to 
think of the displacement field as tending to concentrate in regions of high 
dielectric constant (small l/e). 

Now we can try to understand the formation of gaps. Consider the second- 
lowest band of modes, which must be orthogonal to the first-lowest band 
and hence have a node in D in the high-dielectric region. This allows less 
concentration of D in the high-dielectric regions so that the second-lowest 
band does indeed have higher frequency. 

So far the argument holds for both TE and T M  modes. The essential 
difference between the two cases comes from the vector nature of D. For a 
T E  mode, the displacement field lines lie in the plane and necessarily cross 
low-dielectric regions, while for T M  modes the displacement field lines are 
along z. Thus for T M  modes there is a much larger difference between the 
first and second band, since in the first band D lies almost entirely within the 
high-dielectric regions, as illustrated in Fig. 3. For T E  modes there is a small 
difference in frequency between the first and second band but not enough to 
cause an omnidirectional gap. 

This can be made quantitative by introducing the ratio 

fdielectric d3r E* (r). D(r) 
f =  ~ E---~: "1~"~ (37) 

which determines what fraction of the electromagnetic energy is contained in 
the dielectric regions. For dielectric rods in air, some computed values at X 
are 

Y 
]band 1]band 2 

i 00:  1 
TE 0.2 

Note the large difference in f between the first and second T M  bands, which 
corresponds to the existence of an omnidirectional gap. The above vector 
argument suggested that T M  gaps are formed for connected air regions. For 
connected dielectric regions, we expect a TE gap, by the same reasoning. 
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TM modes D-field at X-point 

Band 1 Band 2 

Fig. 3. Displacement field at the X-point for T M  bands 1 and 2. Black and white 
represent large negative and positive values of D, respectively. Grey regions repre- 
sent small amplitudes of the field. 

Indeed, values of f for connected dielectric regions (air columns in dielectric) 
at X are: 

f 

T M  bando.8 l [band 2 I 

T E  0.7 00:72 

As predicted, the structure has a T E  gap (see e.g. Joannopoulos et al. 1995). 
How can we design a structure with a gap for both  T E  and T M  polar- 

izations? One approach is to make a structure with thin connecting dielec- 
tric veins. A s t ructure  which works well consists of a tr iangular lattice of air 
columns in dielectric. If the diameters of the air columns are large, this struc- 
ture will have a gap for all polarizations. The gap-width-to-midgap-frequency 
ratio can be made as large as 17% = 6W/Wo, as shown in Fig. 4. 

Why  is it useful to quote the width of a gap in terms of this ratio? The 
answer goes back to the scaling properties of Maxwell's equations discussed 
in the first lecture. Once we know there is a gap for a certain structure, we 
can construct the structure at any length scale with the same fractional gap 
width. For instance, we can build a model s tructure at the microwave scale, 
measure its properties, and then scale everything up to optical frequencies, 
where measurements  are more difficult. 

You may have noticed tha t  we plot bands along symmet ry  lines. The 
reason is tha t  usually if a material  has a gap it will have a gap on one of 
the Brillouin zone surfaces which are of higher symmet ry  than  a generic 
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Fig. 4. Photon band structure for a triangular lattice of air columns in dielectric. 
Note a complete photonic band gap for both polarizations of light. 

interior point. There are exceptional structures with gaps at low-symmetry 
points, but these are rare, as suggested by the following argument. Consider 
calculating the band structure by diagonalizing within the first Brillouin zone. 
The strongest matrix elements will be between states differing by a reciprocal 
lattice vector, and all such states occur on high-symmetry planes. (This is 
the same argument used to show that  electron band gaps in a weak periodic 
potential develop first at the zone faces.) 

5 T h r e e - d i m e n s i o n a l  C r y s t a l s  a n d  D e f e c t s  

It is also possible to find gaps in fully three-dimensional structures. In fact, 
the diamond structure of air spheres in high dielectric (e.g. e = 13) can 
be made to have a huge 29% omnidirectional band gap (Ho et al. 1990). 
Unfortunately it has not yet proved possible to make this structure in the 
laboratory. Diamond has six air channels running through the material. If we 
settle for three air channels through the material, each at 35 ° , the resulting 
structure (shown in Fig. 5) has a 17% band gap. This structure is known 
affectionately as "Yablonovite" after its inventor (Yablonovitch et al. 1991a). 
It  is the first photonic crystal fabricated and measured to have a complete 
photonic band gap. 

Now that  we have a basic understanding of perfect photonic crystals, let 
us turn our attention to the properties of defects. A 0-dimensional defect 
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Air Dielectric 

Fig. 5. The method for fabrication of Yablonovite. 

(point defect) can support  a t rapped photonic mode inside a photonic band 
gap. Because frequencies inside the gap cannot penetrate  the bulk of the 
crystal, they are confined to the defect. The defect must be large enough, 
however, to support  a mode in the gap. Figure 6 shows how t rapped defect 
modes appear  in the spectrum with increasing defect size. The experimental  
results are from Yablonovitch et M. (1991b). In this plot, the air defect mode 
appears  at a much smaller size than  the dielectric defect because the air 
defect changes the topology of the structure by cutting a dielectric vein. 

0.6 

O @ o.,~ 

>" L. 

0,5 
ET 

0.,45 0 1 2 3 4 5 6 

Defect  Volume (k /2n )  3 D ~ e  Defect 

Fig. 6. Plots of air and dielectric defect frequencies within the band gap of 
Yablonovite as the defect size varies. Solid lines are theory and dots are experi- 
ment. 
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The  new defect modes are analogous to modes in doped semiconductors: 
the air defect acts like a repulsive potential, and the dielectric defect like an 
at tractive potential. Defects which are extended in one dimension may have 
a number of interesting applications and will be discussed in detail in the last 
lecture. Surface modes which are extended in two dimensions arise naturally 
at the boundaries of three-dimensional crystals (the edge of a crystal is a 
"defect" in the periodic lattice). 

In Fig. 7 we display the photon states associated with a surface of the 
Yablonovite crystal. The modes of this system can be grouped into four cat- 
egories: 1. E E  (extended in air, extended in crystal); 2. E D  (extended in 
air, decaying in crystal) which correspond to vacuum modes reflected at the 
surface of the crystal; 3. D E  (decaying in air, extended in crystal) which 
are crystal modes not satisfying the vacuum dispersion relation, so that  they 
are t rapped in the bulk of the crystal; 4. D D  (decaying in air, decaying in 
crystal) which are t rapped at the surface. 
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Fig. 7. The projected band structure of the (111) surface of Yablonovite. The black 
lines lying within the photonic band gap represent bona fide surface states. 

A sharp surface is determined by its inclination (the angle of the surface) 
and its termination (a number varying from 0 to 1 which describes where the 
surface cuts the crystal unit cell). An important  result is that  if a crystal has 
a photonic band gap, then for  any inclination there exists some termination 
which yields a surface mode (a D D  mode in the earlier classification). 
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L E C T U R E  I I I  

In this lecture we s tudy in more detail the properties of the defects: point and 
line defects, in a photonic crystal. These defects not only display interesting 
physical phenomena, but  also have potential for use in various applications 
of the optoelectronic industry. 

We shall use a simple 2D lattice as our working example. The perfect 
crystal is made up of a square lattice of dielectric rods. As we have discussed 
previously, such structure possesses a photonic bandgap for the T M  polar- 
ization. 

6 Poin t  Defects  

A point defect can be introduced into the otherwise perfect lattice by chang- 
ing the size of one of the dielectric rods. Such a defect can localize an elec- 
tromagnetic wave, much in the same way a donor or acceptor atom localizes 
electronic wavefunction. Following this analogy, there are also two types of 
the point defects in a photonic crystal: an "air" defect, created by using a 
rod that  is smaller than the rest, and a "dielectric" defect, created by using 
a rod that  is larger than the rest, as shown in Fig. 8. 
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Fig. 8. Plots of air and dielectric defect frequencies within the band gap of the 
square lattice of rods in air as the defect size varies. 

The frequencies of the defect mode can be tuned by altering the radius 
of the defect. In the case of an "air" defect, we begin with a perfect crystal 
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- -  where every rod has a radius of 0.20a - -  and gradually reduce the radius 
of a single rod. Initially, the perturbation is too small to localize a mode in 
the crystal. When the radius reaches 0.15a, a resonant mode appears in the 
vicinity of the defect. Since the defect involves removing dielectric material 
in the crystal, the mode appears at a frequency close to the lower edge of the 
band gap. As the radius of the rod is further reduced, the frequency of the 
resonance sweeps upward across the gap, and eventually reaches f = 0.38c/a 
when the rod is completely removed. 

The frequency of the "dielectric" defect mode can be tuned as well by 
changing the size of the defect. Again, starting from a perfect crystal, we 
gradually increase the radius of a rod. When the radius reaches 0.25a, two 
doubly degenerate modes appear at the top the gap, since the defect involves 
adding material. The  modes sweep downward across the gap as the radius 
increases, eventually disappearing into the continuum below the gap when 
the radius becomes larger than 0.40a. 

In addition to mode frequencies, the symmetry of the mode can be altered 
as well. While the "air" defect creates a monopole mode, the "dielectric" de- 
fect can create doubly degenerate dipole modes (as illustrated in Fig. 9). More 
complex modal patterns are possible as the size of the defect is increased. 

monopole dipole dipole 
r=O. l a r=O.33a r=O.33a 

Fig. 9. Electric fields associated with two defect modes shown in Fig. 8. Note that 
the dipole mode is doubly degenerate. 

The  ability to change the frequency and the symmetry of the defect modes 
can have profound consequences in the control of spontaneous emission. The 
rate of spontaneous emission is related to the density of states of available 
modes and the transition matrix element between the initial and the final 

states. 
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27~ 
R = T ]  < flnint]i > ]2p(~n) (38) 

A defect in a photonic crystal offers control to both the density of states and 
the matrix elements (Joannopoulos et al. 1997). 

The effects of perfect photonic crystal lattice and defect structure on 
the density of available modes is illustrated in Fig. 10. In free space, the 
density of states goes as w2, which determines the "natural" rate emission. 
In a photonic bandgap of a perfect photonic crystal, however, no modes are 
available for the transition and the spontaneous emission can be suppressed 
(Yablonovitch 1987). On the other hand, when a defect mode is introduced 
in the gap, the DOS at the resonance frequencies is greatly increased, leading 
to enhancement of spontaneous emission. 
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Fig. 10. Control of spontaneous emission with photonic crystals. 
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In addition to altering the density of states, photonic crystals offer con- 
trol over the symmetry of the photon wave function and could dramatically 
influence the selection rule. In the case of a light-emitting transition in free 
space, the photon emitted typically has s-like symmetry, transitions between 
s-like and p-like atomic states are allowed, while transition between two s-like 
or two p-like states are forbidden. In a photonic crystal, on the other hand, 
the photon can have p-like symmetry, the selection rule is then completely 
different. The transition between s-like and p-like states is now forbidden, 
while the transition between two s-like or two p-like states is allowed. 

The ability to control spontaneous emission using a photonic crystal could 
have a huge impact on laser design. Lasing conditions in materials are associ- 
ated with relative rates of transitions between different levels. The capability 
to affect these transition rates could lead to, for example, lasing at wave- 
lengths where no ordinary laser is currently available. It could also lead to 
higher efficiency or lower threshold for available laser systems. 

As a major step towards building such photonic crystal cavities, an air- 
bridge microcavity has recently been fabricated and successfully tested by 
Foresi et al (1997). The results are shown in Fig. 11. The localization here 
relies on a 1D photonic bandgap along the waveguide and total  internal re- 
flection, i.e. index confinement, along the other two directions. To maximize 
the index difference between the cavity and the surrounded media, part  of 
the substrate underneath the cavity is oxidized, resulting in a monorail-type 
geometry. Fabrication of such structures represents a major achievement in 
microlithography. It opens the way for incorporating a laser cavity onto a 
waveguide and could lead to novel micro optoelectronic devices, such as op- 
tical switches and in-plane microlasers. 

/ 
/ 

/ 

F- i / / 
/ 

/ 
/ 

/ 

1.0 
d- 
O 

~ 0.8 
E 

o,6 

~ 0.4 
.N 

E 0,2 
O 
Z 0 

• i • i • i 

Experiments (Foresi et al,' 

.~ 194 nm 

1300 1400 1500 

126nm 

L J,. 
1600 1700 

Wavelength (nm) 

Fig. 11. SEM and measured transmission for a single mode photonic band gap 
microcavity designed to operate near 1.56 microns. 
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7 Line Defects  

We now turn our attention to line defects in a photonic crystal. A line defect 
can be created, for example, by removing one row in an otherwise perfect 
array of dielectric rods. Such a defect leads to a band of states in the gap 
which behaves like a single-mode waveguide band. The electric field for any 
state in this band turns out to be highly localized along the defect and decays 
exponentially away from it (see e.g. Joannopoulos et al. 1995). 

Thus the photonic crystal waveguide is unique in tha t  it can guide optical 
light in an air region surrounded by a higher dielectric region. This is be- 
cause it operates on an entirely different guiding mechanism. A conventional 
waveguide, based on the principle of total-internal reflection, can only guide 
light in a high-dielectric strip surrounded by low dielectric media. 

The operation of a conventional waveguide, based on the principle of total  
internal reflection, is restricted by radiation losses to moderate curvature 
bends. In fact, when light is steered around a corner in such a guide, the 
radius of curvature must well exceed the wavelength the light even for high 
dielectric contrasts in order to avoid large losses at the corners. When a bend 
is introduced into a photonic crystal waveguide, on the other hand, no power 
will be radiated out of the guide as it travels around the bend, because there 
are no extended modes into which the propagating mode can couple. Light 
will either be transmit ted or reflected; only back reflection will hinder perfect 
transmission. 

To study the transmission and reflection properties of photonic crystal 
waveguide bends, we simulate the propagation of an EM wave as shown in 
Fig. 12. In the simulation, a dipole located at the entrance of the waveguide 
creates a pulse with a Gaussian envelope in time. The field amplitude is 
monitored inside the guide at two points, one before the bend (point A) and 
one after (point B) as indicated in the panel. Although most of the light that  
reaches the edge of the computational cell is absorbed by the boundaries, 
some light gets reflected back from the ends of the waveguide. By using a 
sizable computational cell of 100 × 120 lattice constants and by positioning 
each monitor point appropriately, we can distinguish and separate all the 
different pulses propagating in the cell; the useful pulses, such as the input 
pulse and the pulses reflected by and transmitted through the bend, and the 
parasite pulses which are reflected from the edges of the cell. These pulses 
are clearly shown in Fig. 13. 

In the specific simulation considered here, six pulses are sent down the 
guide, covering different ranges of frequencies as indicated in Fig. 14. The 
pulses are then Fourier transformed to obtain the reflection and the trans- 
mission coefficients at each frequency. The transmission and reflection coef- 
ficients do add up to unity for every frequency in the gap, which confirms 
that  there is no observable radiation loss, in spite of the close proximity of 
the waveguide to the edge of the computational cell. The transmission drops 
sharply to zero below the cutoff frequency of the guided mode. The transmis- 
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Fig .  12. Schematic view of computat ional  cell used to study transmission around 
sharp waveguide bends in a photonic c rys ta l  
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Fig .  13. Field ampli tude recorded at A and B, as a function of time. 
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sion for frequencies w < 0.392 2~rc/a is larger than 95%, and reaches 100% 
when w = 0.353 21rc/a. The field pattern of the propagating mode can be 
observed by a CW excitation of the guided mode. We show in the right panel 
of Fig. 14. the electric field pat tern for the case where w = 0.353 27rc/a. 
The mode is completely confined inside the guide, and the light wave travels 
smoothly around the sharp bend, even though the radius of curvature of the 
bend is smaller than the wavelength of the light. 
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Fig. 14. Left panel: spectral profile of six input pulses and the associated computed 
transmission and reflection coefficients. Right panel: electric field pattern in the 
vicinity of the bend for frequency a = 0.353(2rc/a). 

Both the high transmission through the bend and the oscillatory behavior 
of the transmission spectrum can be explained by a simple model. The bent 
photonic crystal waveguide structure can be viewed as separate waveguide 
sections, one in the (01) direction and one in the (10) direction, connected 
by a short waveguide in the (11) direction. For a given frequency w, there is 
a single wavevector k(w) for the guided modes in any particular waveguide 
section. We label these wavevectors kl(~) for propagation along the (01) or 
(10) direction, and k2(co) for the (11) direction. These wavevectors are given 
by the dispersion relations shown in Fig. 15. 

The transmission through the bend is modeled as a simple one-dimensional 
scattering process in which the mode propagating with wavevector kl is 
scattered into the mode with wavevector k2, then back into the mode with 
wavevector kl. At the interface, continuity of the field and of its derivative is 
required, as one would do in the case of a plane E M  wave normally incident 
on a boundary between materials with different refractive indices. By corn- 
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Fig. 15. Dispersion relations kt(w) and k2(w) for propagation of light along 
(10)/(01) and (11) directions, respectively. 

plete analogy with the one-dimensional SchrSdinger equation, we can map 
this problem onto that  of a wave propagating in a "dielectric potential". 
This potential consists of three constant pieces, corresponding to the (01), 
(11), and (10) propagation directions, respectively, as shown in the inset of 
Fig. 15. This model differs from the usual one-dimensional scattering problem 
in that  the depth of the well, determined by the difference [kl (w)[2 _ [k2 (w)[ 2, 
now depends on the frequency of the traveling wave. 

The reflection coefficient is then given by 

[ ( = 1 + ( 3 9 )  

The sole parameter in determining the reflection coefficient is the length L 
of the well (or of the bend). To set this parameter, we can select a single 
point from the computational results shown earlier in Fig. 14. We choose the 
point at o~ -- 0.353 27rc/a, where the reflection coefficient is zero. Our choice 
of solution is L = 1.33v~a, which is the one closest to the physical length of 
the (11) portion of the waveguide. 

The validity of this model is demonstrated by varying the length of the 
(11) waveguide section and compare the reflection coefficients computed from 
the numerical simulations to those obtained from the analytic expression. 
The value L = 1.33x/2a found above is used to set the parameter L in each 
case. As we vary the bend length by integer multiples of v/2a, the effective 
length L should also change by the same amount, giving L = 0.33v/2a, L = 
1.33x/~a, L = 2.33x/2a, and L = 3.33v/2a as illustrated in Fig. 16. Good 
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agreement is found between the one-dimensional scattering model (solid line) 
and the numerical simulations (diamonds). The model correctly predicts the 
frequencies where the reflection coefficients vanishes, as well as the general 
quantitative features of the transmission spectrum. 

c 
._¢ 
o 
~E 

0 
<- 
0 ,:i= 
(o 

o) 
t-v 

0.2 

0.18 I 0.1 

0.05 

0 . 
0.3 

L = 0.33x'2a 

032 0.34 0 38 0.38 04 042 044 

• O • • • •  

o.2 ~ L 2 a ~  • o o o o o o  o is = ] 33x" 
• • O O •  

0.1 • 0 • • 0 •  

0.05 • • 0 0 0 0  

0 • O O O O 0  
03 032 0.34 0.36 0.38 04  042 044 

L = 2 3 3 x "  a • • • 
• 0 • • •  
• • 0 • 0  

• • Q Q e •  

• 0 • 0 • 0  

032 0.34 038 0.38 04 042 0.44 

0.2 

015 

01 

0.05 

0 
0.3 

0.2 

°151 o05 ol . .  . . . . . . . : . - .  . . . . .  .... 
• • • • • • 

O 0 3 [  • I • • • • 032 034 036 0 38 0.4 0.42 044 

F r e q u e n c y  ( ~ a / 2 ~ c )  

Fig. 16. Reflection coefficients computed from numerical simulations (diamonds) 
and from 1D scattering theory (solid line) for four different bend geometries. 

One notes tha t  the 90 ° bend with zero radius of curvature, as shown 
in the top panel of Fig. 16, is not described in this model by a uniformly 
constant potential, but by a potential with an effective length L = 0.33x/2a. 
This length is extrapolated from the bends with longer (11) sections. The 
model accurately predicts the existence of reflection from the bend, with 
transmission exceeding 95% for guided modes below w = 0.403 2~rc/a. This 
behavior is in marked contrast to that  of a conventional dielectric waveguide 
with a sharp 90 ° bend. Power transmission reaches at most 30% even for a 
guide with a refractive index contrast of 3.5 to 1 with its surroundings, due 
to large radiation loss at the corner. 
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Abstract .  An overview of the theory of the linear optical response of planar semi- 
conductor microcavities with embedded quantum wells is presented. In particular, 
the optical properties close to the excitonic transition in the strong coupling regime 
are addressed and the formalism of exciton polaritons is used. First, the transfer ma- 
trix formalism is introduced in order to solve Maxwell equations for the Fabry-P@rot 
microcavity with distributed Bragg reflectors and to study the cavity mode features. 
Then, the coupling to a quantum well excitonic resonance is included within the 
semiclassical formalism for the optical response. The main qualitative and quanti- 
tative features of microcavity polaritons are illustrated through several calculated 
optical spectra and, afterwards, a more formal description of the polariton modes 
is provided. Finally, the problem of the full quantum description of the exciton 
photon coupling is briefly addressed. The quasimode formalism is introduced and, 
as an example of application, a simple model for microcavity photoluminescence 
under nonresonant continuous wave excitation is presented. 

1 I n t r o d u c t i o n  

Semiconductor microcavities with embedded heterostructures exhibiting an 
excitonic resonance have been studied for the first t ime [Rarity (1996)] ten 
years ago. The first studies, both theoretical and experimental,  were stimu- 
lated by the results obtained in the domain of atomic spectroscopy for a t o m -  
cavity systems. In particular, two main objectives were the measurement  of 
a modification - either enhancement or inhibition - of the excitonic sponta- 
neous emission rate and the observation of the vacuum field Rabi splitting 
in the strong coupling regime. These two objectives have been achieved in 
the early nineties [Yokoyama (1990), Weisbuch (1992)] and, since then, the 
field has grown at a rather  unexpected rate [Burstein (1995)]. The reason 
of this growth is twofold. From an application point of view, microcavities 
have been considered a very promising benchwork for the fabrication of novel 
light emitt ing devices [Ebeling (1993), Benisty (1998)]. On the other hand, 
people working on more fundamental  issues have realized tha t  microcavities 
could provide a great help in understanding the physics of semiconductor 
heterostructures in the range of energies close to the band gap. I t  is for this 
reason tha t  recently all the main steps in the investigation of the optical 
properties of semiconductor heterostructures are being applied to microcav- 
ities. In the concluding chapter of these notes we will mention some of the 
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most recent theoretical and experimental works that have provided evidence 
for new interesting phenomena and better understanding in the physics of 
semiconductors. 

These notes are intended to review the linear optical properties of multi- 
layered planar dielectric structures embedding quantum wells with excitonic 
resonances (The theory of nonlinear optical properties of microcavities is 
covered in detail in the lectures by Prof. S. W. Koch in this same volume). 
The physical system that we will focus on is the semiconductor microcav- 
ity with embedded quantum wells, which has been object of research in the 
past ten years. We will adopt Maxwell equations to describe the electromag- 
netic properties of dielectric multilayered structures and in particular the 
monochromatic plane wave propagation. The dielectric media will be consid- 
ered as homogeneous and non absorbing, thus described by a real dielectric 
constant. The solution of Maxwell equations will be obtained by means of the 
transfer matrix formalism which is the most useful for these kind of struc- 
tures. The transfer matrix formalism will be introduced in the first part of 
the notes. The second part will present the derivation of the optical response 
of a Fabry-P@rot (FP) resonator with arbitrary mirror structure. The Airy's 
formula describing the FP complex transmission and reflection coefficient 
will be obtained. The two special cases of a constant mirror reflectivity and 
of a Distributed Bragg Reflector will be considered. In both cases the FP 
transmission and reflection spectra are presented and the dispersion of the 
FP modes is derived. The electromagnetic properties of an exciton level of a 
quantum well in the linear regime are described by a resonant linear suscep- 
tibility. We will derive the transfer matrix of a quantum well starting from 
the linear susceptibility. Then, we will again calculate the optical response 
of a FP embedding one quantum well. The treatment allows to derive the 
dispersion of the optical resonances of the system. These resonances are inter- 
preted as coupled modes originating from the exciton and the cavity mode, 
namely they are the polariton modes of the system. The polariton properties 
are consequently studied and simple expression for the relevant quantities are 
derived. The last chapter is devoted to a brief introduction to the quantum 
theory of microcavity polaritons. We define the microcavity photon and ex- 
citon operators and present the polariton Hamiltonian. We discuss in detail 
the so called quasimode approximation, which greatly simplifies the problem 
of the coupling to the electromagnetic field outside the cavity. By means 
of this approximation we present a simple model for microcavity polariton 
photoluminescence which succeeds in explaining the existing experimental 
findings. 

2 M a x w e l l  e q u a t i o n s  a n d  t h e  t r a n s f e r  m a t r i x  a p p r o a c h  

We consider a structure made of a stack of different layers of given thick- 
nesses and infinite lateral extension. The whole structure is thus planar and 
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translational invariant along the plane. The axis perpendicular to the plane 
is here indicated as the z axis. The layers are assumed to be made of homo- 
geneous materials with a uniform, frequency independent dielectric constant 
which differs from layer to layer. A sketch of a sample structure is shown in 
Fig. 1. 

Z 

I 

I 

x 

Fig. 1. An example of a multilayered dielectric structure. The corresponding di- 
electric constant profile c(z) is plotted on the right. 

Assuming a monochromatic field at frequency w, in absence of charge or 
current density, the Maxwell equation for the electric field reads [Jackson (1975)] 

02 2 
V2E(r, z) + -~-e(z)E(r, z) = 0 , (1) 

where r is the in-plane position vector and e(z) is the dielectric constant 
profile. According to our assumptions, the function e(z) is piecewise constant. 
In addition, it is assumed to vary only within a finite z interval, which means 
that  the thickness of our multilayered structure is finite. Because of the in- 
plane translational invariance, the solutions of (1) are plane waves along the 
in-plane direction. For each given in-plane wave vector kll and polarization 
thus, we write 

Ekt L (r, z) = ekLt Ukl l ,~(z)e  ikli'r , (2) 

where Ek, is the polarization vector. Replacing into (1) we get a one dimen- 
sional problem for the mode function Ukrl,~ (z): 

d2Uk,,,~ (z) 
dz 2 

~2 
(3) 

This equation may be separately solved in each homogeneous layer. For a 
layer with dielectric constant e we have 
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Uk, ,~ (z) = El (kll)e -ikzz + Er (kll)e ik" z , (4) 

V/: kz = -j~ - k I . (5) 

The solution represents two monochromatic waves traveling in opposite direc- 
tions. It turns out from (5) that  propagating waves exist only for (w2/c2)e > 
k~, otherwise the solution is an evanescent wave along z. The quantities E1 
and Er are complex coefficients which have to be determined by imposing 
Maxwell boundary conditions at each interface between two layers. This task 
is very simple within the transfer matrix approach. 

2.1 T r a n s f e r  m a t r i c e s  

In relation to the one dimensional problem (3), we define for each position z in 
space a two dimensional vector, with components given by the two coefficients 
in (4), as 

We drop the kll-dependence of the El and Er coefficients, since the problem 
is separate in kll-space. For an arbitrary structure, one can write the field in 
the form (4) for two points zl and z2 at the two boundaries of the structure, 
as illustrated in Fig. 2. Maxwell boundary conditions across the structure 

(2) 
(1) E r E r  ~ 

E 1 I> E (2)i 

I I 

Z 1 Z 2 

E >  

Z 

Fig. 2. Fields propagating on the two sides of a planar structure. 

will result in a linear relation between the coefficients in zl and z2, which we 
write as 

E~ 2) = [M21 M22J [E l  1) (7) 
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The matr ix M thus defined is the transfer matrix  of the structure we are 
considering. 

The most important  property of transfer matrices is also a very intuitive 
one: they can be composed to obtain transfer matrices of larger structures. 
This means that,  given two structures characterized by the matrices Mt and 
M2, following each other in the spatial order from left to right, the transfer 
matr ix of the overall structure is simply M : M2M1. This property is what 
makes transfer matrices so powerful. In fact, starting from the matrices for the 
simplest elements, namely the homogeneous layer of given thickness and the 
simple interface, one can simply derive the wave propagation for arbitrarily 
complex planar structures. 

We give here, without proof, these elementary transfer matrices. It is 
straightforward to show that  the transfer matrix corresponding to the prop- 
agation from Zl to z2 in a homogeneous medium is given by 

Mhom elk, ( zl ) 0 
= e_ik~(z2_z~ ) ( 8 )  

The transfer matrix for an interface at position z0 between two dielectric 
layers is defined as the matrix which relates the vectors of type (6) on the 
two sides of the interface, namely at z -~ z + and z -~ z o .  It is different for 
the two different polarizations TE  (Transverse Electric) and TM (Transverse 
Magnetic) 1, which are illustrated in Fig. 3 and Fig. 4. 

The transfer matrix for an interface and for TE polarization is given by 

M T E  ~-- [ kl + k7 ) kT)-  kT) 

kl  2) -- k l  1) k !  2) + k l  1) 
(9) 

while that  for the TM polarization reads 

M T  M 

n2~.(1) n~ki2) n~k(z 1) _ n2k(2) 2"~z "/- 1 z 

2nln2k~ 2) 2n ln2k  (2) 

n2k(Z)2 z _ ~2~(2),oz '~z n~k(1) + n2k(2)l z 

2n ln2k  (2) 2nln2k~ 2) 

(lo) 

Here 

= - , ( 1 1 )  

1 These two polarizations are also indicated by s and p polarizations, respectively. 
See e.g. [Jackson (1975)] 
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n 1 

E(I) / 

X 

n2 

Z 

Fig. 3. Propagation of TE-polarized waves at a dielectric interface. The electric 
field polarization points outside from the page. 

where j = 1, 2 indicate the left and right side material  respectively, and nj = 

v/~ .  These transfer matrices may be derived by a straightforward application 
of Maxwell boundary  conditions. 

From a practical point of view, the three expressions (8), (9), (10) together 
with the composition law is all one needs to employ the transfer matr ix  
approach by her own. It  is enough to put the input field on the left side of a 
s t ructure and one gets the output  field on the right side. There are however 
some properties which will allow us to perform analytical calculations on 
transfer  matrices. 

2.2 T r a n s f e r  m a t r i c e s  u n d e r  t i m e  a n d  s p a c e  i n v e r s i o n  

The Maxwell boundary conditions must be invariant under t ime reversal. This 
means that  the complex coefficients of the transfer matr ix  do not change if 
we reverse the t ime evolution, provided we always stick to the convention 
tha t  the first component  of the 2-D vector is the r ight-propagating wave. 

To derive the action of t ime reversal on the 2-D field vectors we should 
recall tha t  the amplitude of the electric field is given by the real par t  of its 
representation in terms of complex exponentials: 

E(r,z,t) = 7~e [(Ele - ik 'z  + Ere ik'z) e toilre -i~t] (12) 

I t  is then easy to verify tha t  the time reversal operator  T acts as 
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Fig. 4. Propagation of TM-polarized waves at a dielectric interface. The polariza- 
tion vectors are indicated by the smaller arrows. 

~E(r, z, t) = E(r, ~, - t )  
= Tie [ ( E ; e  - i k ' z  + El*e ik'z) e-ik" "re--iwt] (13) 

Thus,  in addition to the sign reversal kl[ --+ -kl l  , T acts on the 2-D vectors 
[Er, El] as 

_ _  [E, ] (141 
The t ime reversal invariance allows us to relate the four elements of a 

general transfer matr ix  to the complex reflection and transmission coefficients 
of the corresponding structure. Consider the situation in which a unitary wave 
is incoming from the left, a wave of ampli tude r is reflected in the opposite 
direction and a wave of amplitude t is t ransmit ted from the right boundary 
of the structure, as shown in Fig. 5. Then 

[:] = [Mll M12} [ : ] ! . M 2 1  M2 2 , (15) 

which gives 
M21 det (M) 

r - -  t - -  
M 2 2  ' M22 

Now we apply the t ime reversal operator to the relation (15), obtaining 

(16) 

(17) 
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1 t 

Fig. 5. Waves originating from a wave of unitary amplitude incoming from the left. 

where it has been assumed that  the transfer matrix is invariant under time 
reversal, namely T M T  -1 = M. Then two other relations are obtained: 

r* - M12 t* - det (M) (18) 
Mll  ' Mll  

We need a further step which consists in finding the determinant of the 
transfer matrix. To do this, we define the reflectance R = Irl 2 and the trans- 
mittance T = I t l 2 / o q 2 ,  where 

T4e(klz) (19) 
O q 2  - -  ~e(k2z) 

for TE  polarization and 

 c(klz) (20) 
a12 -  e(k2z) 

for TM polarization. Here, nl ,  n2 are the refractive indices of the left and 
right side materials respectively. Then, by using the relation R + T = 1 
together with (16) and (18), very simple algebra brings to the result 

det(M) = a12 • (21) 

This result is very general and is a direct consequence of energy conservation. 
In particular, when the refraction indices on the left and right sides of an 
arbi t rary planar structure are equal, the transfer matrix is unimodular. Once 
the determinant of a transfer matrix is known, Eqs. (16) and (18) can be 
solved for the matr ix elements Mij. It turns out that  the general expression 
of a transfer matr ix in terms of the reflection and transmission coefficients is 

i 1 r* t* t* 
M = ~ 2  (22) 

r 1 

• t t 
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The corresponding inverse matrix which expresses the left field as a function 

M_  1 = __1 (23) 

t* J 

These expressions are generally valid for any planar multilayered structure 
without absorption. The general form of a transfer matrix of a symmetric 
s tructure which includes absorbing elements has been discussed by Citrin 
[Citrin (1993)] and will not be reported here. 

Another important  simmetry operation is the space inversion along the z 
direction. Of course, in general a planar multilayered structure is not invariant 
under such a simmetry operation. However, we are going to use the space 
inversion operator when describing the Fabry-P~rot resonator. By applying 
the inversion of the z coordinate on the electric field as expressed in (12), we 
obtain the obvious result that  the left and right traveling waves are simply 
exchanged 

The transfer matrix 7t7/ of the spatially reflected structure can be expressed 
in terms of the matr ix elements of the originary structure. In particular, if M 
has been defined in terms of the reflection and transmission coefficients, like 
in the first sketch of Fig. 6, then the spatially reflected structure will have 
the same r and t for light incoming from the right, as in the second sketch of 
Fig. 6. Then, 7~/can be derived from the relation 

[~] [~/11 ~12] 

which provides two equations for the four matrix elements. The two remaining 
constraints simply come from the requirement that  the most general transfer 
matrix must be of the form (22). We give directly the final result which is 

1 t* (26) 
2~/= ~ r* ' 

(~12 

7 7  
where we assume that  the refraction indices on the left and right sides are 
always nl and n2 (practically, we have flipped the structure but  left the same 
materials on the left and on the right of it). 

Expr.  (26) is useful because it allows to write the transfer matr ix of a 
structure once we know the coefficients r and t corresponding to light incom- 
ing from the right. This expression will be used in the next section to derive 

of the right field is 
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r ~ t 

Fig. 6. The same structure as in Fig. 5 and the corresponding spatially 

r 

structure. 

the properties of a Fabry-P~rot  resonator, where we will assume to know the 
reflection and transmission coefficients of the two mirrors for light inside the 
Fabry-P~rot.  

We remark tha t  the spatially reflected matr ix  here obtained is substan- 
tially different from the inverse matr ix  (23). The spatially reflected matr ix  
allows to define a structure in terms of the reflection and transmission coef- 
ficient for light incoming onto its right surface. In fact, this matr ix  gives the 
"output" fields (those on the right side) when applied to the "input" fields 
(those on the left side) for a structure which is the mirror image of the origi- 
nary structure. On the other hand, the inverse matr ix  simply allows to derive 
the "input" fields once the "output" fields are known for the given structure. 

3 The Fabry-P~rot resonator 

We are now going to describe the properties of the simplest light confining 
device: the Fabry-P~rot  resonator. The Fabry-P~rot  resonator is a planar 
s tructure made of two parallel mirrors. The mirrors can be of any kind, so in 
our t rea tment  we will consider two generic mirrors described by their reflec- 
tion and transmission coefficients. The Fabry-P~rot  resonator is illustrated 
in Fig. 7. The central body between the two mirrors has refraction index nc 
and is called spacer. For the moment  we do not make any assumption about  
the thickness Lc of the spacer. The refraction indices for the left and right 
materials  are nl  and n2 respectively. As illustrated in Fig. 7, we consider 
a plane wave of unit amplitude incoming from the left of the structure and 
consequently define the reflection and transmission coefficients r and t of the 
whole structure. The complex quantities a and b indicate the amplitudes of 
the two waves propagat ing in the spacer region. In the most  general case, the 
two mirrors are different and we have denoted their reflection and transmis- 
sion coefficients by r l ,  tl and r2, t2 respectively. It  is important  to remark 
tha t  these coefficients are defined, for each mirror, for light incoming from 
the spacer region. 

We look for the transfer matr ix  of the whole structure. This is simply 
obtained by applying the knowledge gathered in the previous section. In par- 
ticular, we have to compose three transfer matrices corresponding to the left 
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Fig. 7. The sketch of a Fabry-P~rot resonator with two generic mirrors. 

mirror, the spacer and the right mirror, called M1, Ms and M2 respectively. 
They are given by 

[ rl 

M~ = ~ , (2r) 

L t~ t~ 

"e ikZLc 0 

M s  = 

1 
= 

0 e - i k 'L¢  

1 r~ 
t~ t~ 

(28) 

(29) 
r2 1 
t2 t2 

A few important remarks follow. The matrix M2 is just given by the 
expression (22) because r2 and t2 are defined for light coming from the left, as 
in our convention. On the other hand, the matrix M1 derives from expression 
(26), since the coefficients rl and tl are defined for light coming from the 
right of the mirror. 

The transfer matrix of the Fabry-P~rot structure is 

MFp = M2 • Ms • M1 (30) 
eik,L¢ _ r ~ r ~ e - i k ,  L¢ r l e i k z  Lc _ r ~ e - i k . L c  

t l t  2 t l t  2 
~- 0L212 

r~e - i k~L¢  _ r2eikzLc e - i k z L c  _ r lr2eik=L¢ 

t~t2 t]te 
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Let's make a few considerations about this large expression. First, one 
should remark that  MFp is of the general form (22), as expected. In fact, 
the two diagonal elements are conjugate to each other, as well as the two 
off-diagonal ones. Using (22) we can also derive in a straightforward way the 
transmission and reflection coefficients of the Fabry-P6rot, which are given 
by 

1 
t F p  - -  - -  

[MFp]22 
t l t2 eik,L¢ 

= (31) 
1 - r lr2e 2ik~L~ ' 

rFp = tFp [MFP]12 
* _ r l e 2 i k z L ¢  

__ t 2  r 2 (32) 
t~ 1 - r l r 2 e  2ik~L¢ " 

These expressions are the most general ones for a Fabry-P6rot resonator, once 
the properties of the mirrors are known. In general, the reflection and trans- 
mission coefficients of the two mirrors are complex quantities that  depend on 
frequency and in-plane wave vector. We consider two particular cases in the 
following, namely the metallic mirror case and the distributed Bragg reflector 
c a s e .  

3.1  F a b r y - P ~ r o t  w i t h  m e t a l l i c  m i r r o r s  

We take the square moduli of (31) and (32) and obtain the reflectance and 
transmittance of the Fabry-P6rot structure. Some straightforward algebra 
leads to the expressions 

T F p -  [tFpI2 
Ot12 

= 1 ]tlt2l 2 (33) 

~12 ( 1  - Irlr21) ~ + 41rlr21 sin2(kzLc + ¢/2)  ' 

RFp = IrFpI 2 

= (Jr21 - [rl[) 2 + 41rxr2[ sin2(kzLc + ¢/2)  (34) 
(1 - trlr21) 2 + 41rlr21 sin2(kznc + ¢/2)  ' 

where ¢ = arg(rl)  + arg(r2) is the sum of the phases of the two reflec- 
tion coefficients. These expressions are the so called Airy 's  formulae of the 
Fabry-P6rot  structure [Born and Wolf (1993)]. They are valid in general for 
complex, frequency dependent values of the reflection and transmission coef- 
ficients of the mirrors. We notice that  the quantity ~ = 2kzLc + ¢, which is 
the phase change of light undergoing a round trip inside the resonator, enters 
the argument of the sine function in expressions (33) and (34). Keep this 
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in mind until we will derive the same expressions for the distributed Bragg 
reflector case. 

We are not going to provide here a theory for the reflection and trans- 
mission of radiation at a boundary with a metallic medium (See e . g . J . D .  
Jackson, Classical Eleetrodynamics [Jackson (1975)], for a full account). In 
general, the reflection coefficient at a metallic boundary is a complex, fre- 
quency dependent value. In the limit of a perfectly reflecting metallic surface, 
considering TE polarization, the constraint of zero electric field in the body 
of the metal implies that  the incident plus reflected field must vanish at the 
boundary, giving r = -1 .  However, a thin metallic mirror can both transmit  
and absorb light. Thus, in general, the modulus of the reflection coefficient is 
strictly less than one (the situation we are actually interested in). In this case, 
however, in order to preserve boundary conditions the reflection and trans- 
mission coefficients must be complex valued. The important  simplification 
that  we introduce to describe our idealized situation, is the neglection of the 
frequency and polarization dependence of r l ,  r2, tl and t2. This approxima- 
tion will however allow us to understand the main properties of Fabry-Pdrot  
resonators and to establish a useful analogy with the case of Bragg reflectors 
considered in the following. 

In order to have a qualitative and quantitative insight in the properties 
of such structure, we plot in Fig. 8 the reflectance and transmittance of the 
Fabry-Pdrot  as a function of the adimensional parameter  kzLc,  for three 
different choices of the reflection coefficients of the mirrors. In this plot for 
simplicity we assume real reflection coefficients, thus neglecting the phase ¢. 
We recall that  we are neglecting any frequency dependence of r l  and r2. As 
a consequence, all the frequency dependent features of the spectra in Fig. 8 
are due to the multiple interference induced by the resonator. 

The main feature of the spectra in Fig. 8 is the presence of resonant peaks 
at regular intervals. This is the "filtering" effect of the Fabry-Pdrot,  which 
results in a series of resonances regularly spaced. The position of the peaks 
is given by the relation kzLc = NTr, together with the expression (5) for kz. 
In the most general case with a finite phase ¢ depending on w the relation 
becomes 

kzLc + ¢(w) = N~r (35) 

and the phase is generally responsible for a change in the shape and position 
of the peaks. In our particular case, we observe an increase of the width of 
the peaks and a decrease of their intensities for decreasing r2. Of course, 
the narrower the peaks, the better  the frequency selectivity of the resonator. 
We can calculate the cavity full width at half maximum (FWHM) within the 
assumption of narrow peaks, by taking the first order development of the sine 
function in the demoninator of (33). Developing close to the N-th  resonance, 
we obtain 

TFp ~ __i Itlt2l 2 (36) 
a12 (1 - Irlr21) 2 + 41rlr21(kzLc - N ~ )  2 " 
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Fig. 8. TFp (upper plot) and RFp (lower plot) for different real values of rl and r2. 
The first mirror has r~ = 0.8 in the three curves. Full line: r~ -- 0.8. Dashed line: 
r~ = 0.6. Dotted line: rg = 0.4. 

For normal incidence, kz = Wnc/C. Then, after some algebra, we obtain 

TFp _~ __1 v21tlt212/(41rlr21L2c) , (37) 
~12 ( 1 - I T l r 2 1 ) 2 v  2 + (~ - ~N)  2 

41rlr21L2c 

where v = C/nc and w g  = N ~ v / L c .  This is a Lorentzian lineshape and the 
F W H M  is given by 

1 - I r l r 2 1  v 
2% - (38) 

~ Lc 

The selectivity of the resonator can be quantified in terms of the linewidth 
and the separation between peaks. We define the finesse of the Fabry-P~rot  
resonator as the ratio between the peak separation and the linewidth. In our 
case we obtain 

7 - - - ~  ~ ~ (39) 
2%Lc 1 - I r l r 2 1  
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The last information we can derive from our simple Fabry-P~rot  with constant 
mirrors is the dispersion of the Fabry-P~rot  modes. We should not forget that  
the light propagat ing in our structure may have a finite in-plane wave vector 
kll and thus a finite propagat ion angle with respect to the normal direction. 
The dispersion of the cavity modes is the kll dependence of the resonance 
frequencies of the Fabry-P6rot.  We derive the dispersion from (5) together 
with the resonance condition kzLc = NTr and obtain: 

- - n  2 - -  k Lc = N r  (40) 
C2 c 

The dispersion of the lowest Fabry-P~rot  modes is shown in Fig. 9 
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Fig. 9. The dispersion curves of a Fabry-P~rot resonator. The modes with 
N = 1, 2, 3 are plotted. The dashed line is the two-dimensional free photon dis- 
persion w = ckil/nc. 

Let 's  keep in mind this plot too because we will need it when describing the 
microcavity polariton dispersion curves. For the moment ,  we remark tha t  the 
spacing between the modes is a function of kll and that  all the modes have 
the free photon dispersion line w = vkll as an asymptote  for large values of 
kll- 
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3.2 Fabry-Pdrot with distributed Bragg reflectors 

So far we have described the properties of a simplified Fabry-Pdrot  struc- 
ture with equal mirrors having frequency independent reflection coefficient. 
Semiconductor microcavities are essentially Fabry-Pdrot  resonators with a 
peculiar mirror structure [Burstein (1995)]. The mirrors, called Distributed 
Bragg Reflectors (DBRs) [McLeod (1986), Benisty (1998)], are stacks of semi- 
conductor layers with two alternating refraction indices, as in Fig. 10. The 
two indices, tha t  we will call nl and n2 with nl > n2, and the thickness of 
the two layers L1 and L2 are chosen in. order for the two layers to have the 
same optical thickness L 1 / n l  = L2 /n2  = A/4. A DBR designed in such a way 
presents a wavelength interval centered at  A in which the square modulus of 
the reflection coefficient at normal incidence is very close to one, provided the 
number  of pairs is sufficiently high. In addition, the phase of the reflection co- 
efficient within this region, called "stop band",  behaves linearly as a function 
of the frequency. The modulus and the phase of the reflection coefficient of a 
typical DBR are plotted in Fig. 11 for light at normal incidence. The DBR 
thus behaves as a very good mirror, within a given frequency window. This 
proper ty  is preserved also for different incident angles. To show this, we plot 
in Fig. 12 the reflectance of a DBR for its central frequency w, ,  = w r / A  and 
T E  pc!axization as a function of the normalized in-plane wave vector kll/ko, 
where k0 = Wm/V and v is the light velocity in the medium of the incoming 
wave. We remark  that  in both  plots, the reflectance outside the stop band 
shows a highly oscillatory behaviour. In Fig. 12, in particular,  the reflectance 
is characterized by a number of peaks corresponding to the number  of pairs 
of layers in the DBR. These peaks correspond to side resonances due to the 
multiple interference in the structure. These resonances have a very strong 
influence on the physics of any semiconductor microcavity device, as we will 
see in detail later. 

The reflection coefficient of a DBR can be calculated using the transfer 
matr ix  formalism. Here we report  (without derivation) a useful parametr iza-  
tion of the reflection coefficient r(w) at normal incidence, which is valid inside 
the stop band and for a sufficiently high number of pairs of layers. The re- 
fraction indices on the left and right side of the mirror are indicated as n] 
and nr, respectively 2. We assume that  the first layer on the left side of the 
mirror  (the side whose reflectivity we are interested in) has the low refrac- 
tion index n2 and that  the index of the left material  nl is larger than n2 3. 

2 The reader will remark the sudden but necessary change in notation that has 
been introduced. From now on, nl and n2 will denote the refraction indices of 
the DBR layers. The former nl and n2, indicating the indices on the left and 
right side of a structure, Will now be denoted by nl and nr. 

3 The other possible choice is nl as a starting layer and nl < n2. These two 
arrangements maximize the reflectance in the stop band region. The important 
prescription for the design of a DBR is to avoid "steps", namely three successive 
layers with increasing or decreasing refraction indices. With this prescription at 



189 

N 1 pairs 

L / 4  =Lc 

e (z) 

N r  p a i r s  

~ _ _  n sub 

. ncav  

. n l  

. n 2  

. n ext 

........ t 

z 

Fig. 10. The dielectric profile of a typical semiconductor microcavity. 

Moreover, we will always assume that  the DBR has an even number of layers 
2N. The reflectance R = [r(w)[ 2 then is approximately constant and given 
by the value at the center of the stop band w = win. The approximate result, 
obtained neglecting the quantity ( n 2 / n l )  2N compared to ( n l / n 2 )  2N is 

2 N  

(41/ 
nl \ n l /  

The phase of r(w)  has approximately a linear frequency dependence inside 
the stop band, as seen in Fig. 11. Within the same approximations introduced 
for the previous expression, the phase is given by 

¢r(w) - n~LDBR (W -- Win) , (42) 
C 

where LDBR represents an effective thickness given by 

)~ ~ l r t 2  
LDBR - -  (nl > n2) • (43) 

2 n l (n l  -- n2) 

Here, A is the chosen optical thickness (the mirror layers have optical thick- 
ness A/4). We remark that  the quantity LDBR does not depend on the number 
of pairs. Actually, we should remember that  the above expressions are valid 

hand, one easily realizes that the two cases here mentioned are the only relevant 
ones. See Ref. [McLeod (1986)] for details. 



1.0 

0.8 

~._ 0.6 

" 0.4 

0.2 

0 . 0  

A 

s 0 

I ~ I ~ ~ I ~ I 

0.8 0.9 1.0 1.1 1.2 
Normalized frequency 

190 

i 

I 
| ! 

Fig. 11. (a) The reflectance of a 20-pair-DBR with refraction indices n l  ---- 3.0 
and n2 = 3.6 is plotted. (b) The corresponding phase of the complex reflection 
coefficient. 

for sufficiently large number of pairs (not too close to one). In this situa- 
tion, LDnR is not a real penetration depth for the electromagnetic field but, 
rather,  an effective optical length that  expresses the phase change of the elec- 
tromagnetic wave upon reflection. We will see in a while how this parameter  
influences the properties of a Fabry-P~rot. The analytical approximations 
(41), (42) and (43), as well as the other considerations that  we have made 
in relation to the DBR structures, can be derived in a straightforward but 
tediou~ way from the transfer matrix formalism. Here we do not report  such 
derivation, since we are interested only in the practical aspects related to 
microcavities, and refer to the book by H. A. Mc Leod [McLeod (1986)] for 
the readers who want a deeper insight on this problem. In what follows we 
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Fig. 12. The reflectance of a 20-pair-DBR plotted at the mirror resonance Wm, for 
TE polarization, as a function of the normalized in-plane wave vector ktl/ko. 

will always assume tha t  the DBR reflectivity can be parametr ized using the 
three expressions above. 

A Fabry-P~rot  resonator can be built using two DBRs. The expressions 
already introduced for the reflection and transmission coefficient (32) and 
(31) are still valid, as well as those for the reflectance and t ransmit tance  (34) 
and (33). 

At this point we can consider the role of the cavity thickness Lc and under- 
s tand what  makes the difference between a microcavity and a "macroscopic" 
Fabry-P~rot  resonator.  When the thickness of the spacer Lc is large with re- 
spect ~o the wavelength )`, the mirror frequency ~m will be close to some wN 
with N large. Since the spacing between successive a~N values is large with 
respect to win, several cavity modes will appear,  closely spaced, within the 
mirror  stop band. A microcavity instead, is a Fabry-P~rot  resonator whose 
spacer has a thickness equal to a small multiple of ),/2. In such a system, typ- 
ically only one cavity resonance occurs within the stop band, corresponding 
to one of the lowest resonances of the spacer. The resulting electromagnetic 
mode in this case is a narrow isolated peak, as we will see later on. From now 
on we will be interested in the microcavity system. We will use the terms 
),-cavity or ), /2-cavity to denote a microcavity with Lc = ), or Lc = ),/2 
respectively, while Wc will denote the spacer resonance tha t  falls inside the 
stop band region of the mirrors. Incidentally, we remark that  the phase of the 
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reflection coefficient of the DBRs at the stop band center is zero, as appears 
from (42). This means that  the Fabry-P~rot mode inside the spacer will be 
a plane wave with antinodes at the mirror boundaries. Usually, as we will 
see in the next section, microcavities are designed in order to maximize the 
amplitude of the field somewhere inside the spacer. The A/2-cavity, thus, is 
not suitable in the present case since it presents a node at the center of the 
spacer. )~/2-cavities can be built if the other prescription for the mirror design 
is chosen (low spacer index and high index for the first mirror layer), since 
in that  case the phase of the reflection coefficient at the mirror boundary is 
~r at resonance [McLeod (1986)]. 

Again, by replacing (41), (42) and (43) into (33) and by developing the 
sine function around the cavity resonance, an expression analogous to (37) is 
obtained, and the corresponding cavity mode linewidth can be derived: 

1 - R  c 
2~/¢ = v ~  nc(nc + LDBR) ' (44) 

We see that  the mode linewidth is in general narrower than the one of a 
Fabry-P~rot with metallic mirrors of equal reflectance. This effect is a di- 
rect consequence of the frequency dependence of the phase of r (w) .  In fact, 
at normal incidence, an expression analogous to (35) for the condition of 
constructive interference in a round trip holds. For normal incidence this 
expression reads 

n~[(w - wc)Lc + (w - wm)LDBR] = NTr , 
c 

(45) 

where N is an arbitrary integer. In Eq. (45) the term proportional to LDBa 
originates from the phase change upon reflection ¢(w) appearing in (35). In 
the special case where the mirrors are designed with a resonant frequency wm 
equal to the spacer resonance we, Eq. (45) reads 

n¢(w - Wc)(Lc + LDBR) = N~r . (46) 
c 

Such expression corresponds to the resonance condition of an ideal Fabry- 
P~rot with zero phase change at the mirrors and an effective thickness Lc + 
LDBR. This intuitively explains the narrowing of the Fabry-P~rot line with 
respect to the metallic mirrors case: the phase change on a round trip varies 
more rapidly as a function of frequency, thus the resonance condition is sat- 
isfied within a narrower frequency window. From Eq. (45) it also turns out 
that ,  in the general case when Wc does not correspond to an integer multiple 
of win, the resonance condition is met for a frequency w different from both 
wm and we. Moreover, in typical DBRs made of III-V semiconductors, LDBR 
is about  one order of magnitude larger than the microcavity thickness Lc. In 
this case, and for small mirror-cavity detuning, the Fabry-P~rot resonance 
frequency is practically determined by the mirror resonance. This is a very 
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important  property that  has to be considered when designing a semiconduc- 
tor microcavity. From now on, we will always assume a cavity design such that  
wc = wm at normal incidence, and will denote with wc both the cavity and 
the mirror resonance frequency. From a practical point of view, this choice 
minimizes the cavity mode linewidth because the cavity mode frequency falls 
exactly at the center of the stop band region where the mirror reflectance, 
and consequently the light confinement, is maximum. 

Fig. 13 shows the plot of the microcavity reflectance for a typical A-cavity 
and normal incidence. The high reflectance window around w = wc originates 
from the stop band of the two Bragg mirrors. The cavity mode appears as a 
very narrow peak at the center of this region. Outside the stop band, a rather 
pronounced peak structure appears. This structure arises from the interplay 
between the oscillations in the reflectance of the two mirrors outside the stop 
band, as seen in Fig. 11. It can be given various physical interpretation. In 
particular, the minima in reflectivity outside the stop band can be interpreted 
as confined modes other than the main cavity mode, arising from the peaks 
in the DBR reflectivity outside the stop band. Consistently with the previ- 
ous remarks, these modes present a linewidth larger with respect to the main 
cavity mode, because the mirror reflectivity is much smaller than at the stop 
band center, as seen in Fig. 11. These cavity modes exist for all DBR micro- 
cavities. They are called leaky modes, because the electromagnetic field can 
"leak" outside the structure more efficiently at the corresponding frequencies. 
The leaky modes exist for all values of the in-plane wave vector and present 
a dispersion similar to that  of the main cavity mode. From Fig. 12 we can 
deduce that ,  at the cavity resonance Wc, leaky modes exist for several values 
of kll corresponding to the maxima in the mirror reflectance. Their number 
is equal to the number of pairs of layers N of the DBR on the right side (the 
"substrate" side, because we have chosen nr = 3.5). This is iliustrated in Fig. 
14, where the dispersion of the microcavity resonances for a typical structure 
is plotted. In this particular case with nl = 1 (air) and nr > nc (substrate), 
the leaky modes at w = we can only leak into the substrate because of the 
total internal reflection on the air side. Leaky modes are a very important  
feature of microcavities and play a crucial role in the design of microcavity 
light emitting devices. In fact, they act as very efficient channels for emis- 
sion into the substrate, where the light is absorbed and consequently wasted. 
They ~hus constitute one of the main limitation to the overall efficiency of a 
light emitting device. We will come back on this point when discussing the 
radiative linewidth of microcavity polaritons. 

Another interesting interpretation that  has been given to the modes of 
a Fabry-P@rot resonator with DBRs is that  of impurity levels in a one- 
dimensional photonic band gap structure [Stanley (1993)]. Let us imagine a 
single DBR made of N1 + N~ pairs of ),/4 layers. For a sufficiently large num- 
ber of layers, this is a periodic structure. Consequently the electromagnetic 
modes, which obey the one-dimensional wave equation (3), present a band 
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Fig. 13. The reflectance of A-microcavity with DBRs as a function of the normalized 
frequency. The indices are n¢ = nl ---- nr = 3.5, n2 = 3 and n] = 1, while the number 
of pairs is 13 for the left DBR and 21.5 for the right DBR. The spacer thickness is 
Lc -~ 236.3 nm, corresponding to hWc = 1.5 eV. 

s tructure with a gap, in analogy with the electronic states of an insulating 
crystal. The gap exactly corresponds to the stop band of the whole DBR. 
Now we may increase the thickness of the lower index layer in the Na + 1-th 
pair. This variation can be seen as the presence of an impurity in the periodic 
structure.  Stanley et al. [Stanley (1993)] have shown that ,  start ing from ~/4, 
the lowest mode in the "conduction" band of the s tructure splits towards 
lower energies, like a donor level in an insulating crystal. When the thickness 
is increased up to A/2, this impurity level shifts to the midgap position. This 
is exactly the situation of a A/2-cavity with two DBRs. A further increase of 
the thickness of the layer up to 3/4 ~ will bring the impurity level to the top 
of the "valence" band. Now the structure is again equivalent to a single DBR 
with Nl + Nr pairs, because the 3/4 )~ layer induces the same variation to the 
optical phase of a propagat ing wave as a A/4 layer. Still increasing the thick- 
ness of the central layer, another impurity level splits from the upper  band 
and shifts to midgap for a layer thickness equal to A. This is the situation of 
a )~ cavity with DBRs. And so on . . .  
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Fig. 14. The dispersion of the main cavity mode and of the leaky modes of a typical 
microcavity with DBRs. The dashed line is the main cavity mode while the full lines 
are the leaky modes at frequencies below the main mode. The leaky modes existing 
above the main cavity mode are not plotted. The thin horizontal line corresponds 
t o  03 ~ 0Jc. 

We end this digression about  Fabry-P@rot resonators and refer to the fun- 
damenta l  l i terature [Jackson (1975), McLeod (1986), Born and Wolf (1993)] 
for a more specific t reatment.  In the next section we will address the problem 
of a quantum well, having an optically active exciton level, embedded in a 
semiconductor microcavity. 

4 Opt ica l  response  of a microcav i ty  embedded  
q u a n t u m  well 

We are now going to study the linear optical response of quantum wells em- 
bedded in a semiconductor microcavity, close to the e×citonic resonance. We 
will focus on the linear optical response to a plane electromagnetic wave, like 
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in the previous sections. Our starting point will be the transfer matrix of a 
quantum well close to the excitonic transition. The explicit form of this trans- 
fer matrix will be given, without derivation. The derivation of the quantum 
well transfer matrix would require a detailed treatment of the exciton states 
in a quantum well and of their coupling to electromagnetic radiation. These 
topics are beyond the scope of the present notes and will be addressed by 
other lecturers (Prof. S. W. Koch) during this school. We will limit ourselves 
to a brief introduction that will mention the essential aspects of the problem, 
and we will take the quantum well transfer matrix as the starting point of 
this section. 

After a description of the optical response of microcavity embedded quan- 
tum wells, we will introduce the picture of polaritons as mixed exciton-photon 
resonances of the system. We will derive the polariton dispersion relation di- 
rectly from the transfer matrix of the system. The dispersion curves will be 
reviewed and some considerations about the main physical aspects will be 
made. Finally, a few useful approximations will be derived. 

4.1 Optical response of a q u a n t u m  well exci ton 

Semiconductor quantum wells, like bulk semiconductors, are characterized by 
exciton states below the conduction band edge. The optical transition related 
to quantum well excitons is characterized by a given oscillator strength per 
unit surface [Andreani (1995)]. The selection rules for the optical matrix ele- 
ment depend on the particular exciton state, the simmetry of the underlying 
crystal and the growth axis. Here we are not interested in the details of the 
coupling. The only important selection rule, which holds independently of the 
material parameters, is the one originating from the translational simmetry 
of the quantum well along its plane. Due to this simmetry, the in-plane wave 
vector ki] is a good quantum number for exciton states. Consequently, since 
the same simmetry holds for the electromagnetic field, the in-plane wave 
vector is conserved in the exciton-photon coupling. Thus, an electromagnetic 
plane wave with a given kii will only be coupled to exciton states having 
the same kjj. On the other hand, an exciton state with a given kil is cou- 
pled to all the electromagnetic waves with the same kli and all the possible 
values of the orthogonal component of the wave vector kz. This situation is 
substantially different from the bulk semiconductor case, in which both exci- 
tons and electromagnetic field obey three-dimensional spatial invariance and 
a one-to-one coupling scheme holds. This peculiarity of quantum wells is at 
the origin of the finite radiative recombination rate of quantum well excitons 
[Agranovich (1966), Andreani (1991)]. 

We write the electromagnetic polarization P(w, kll, z) in the most general 
way as a linear function of the electric field E(w, kii , z), as 

P(w, kii, z) = f + ~  dz'x(z, z', kii, w)E(~vkil, z') , (47) 
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where the fields are expressed in reciprocal kl] space and real space along the 
z direction, and X(Z, z', klf , w) is the linear susceptibility. From this expres- 
sion, the kll selection rule clearly appears. On the other hand, the coupling 
is nonlocal along the z direction, because of the absence of translational sim- 
metry  in that  direction. The linear susceptibility of the excitonic transitions 
in a quantum well is written as [Tassone (1990)] 

z XqW(z,z' ,kl[,w) = ~ a ; -  
n 

with 6 -+ 0 +. The sum in (48) runs over the different exciton levels for 
a given k[[ and hwn(kjl ) is the corresponding exciton energy with spatial 
dispersion (kll-dependence). The quantities ttcv, F,~(p) and p(z) are related 
to the description of the exciton states in the envelope function approximation 
[Knox (1963), Bastard (1989), Andreani (1995)]. The vector ttcv is the dipole 
matr ix element between conduction and valence Bloch states; Fn(p) is the 
envelope function for the electron-hole relative motion along the plane; p(z) = 
fe(Z)fh(Z) is the product of the electron and hole envelope functions for 
the motion along the z direction. This latter quantity is called the exciton 
confinement function. We remark that  in general the susceptibility (48) is 
a tensor resulting from the tensor product trey ® trey. This tensor product,  
together with the envelope functions and the exciton dispersion, contains all 
the information about the particular material and design of the quantum 
well. 

The optical response of the quantum well is given by the excitonic sus- 
ceptibility (48) plus a background dielectric constant that  accounts for all 
the other optical transitions of the system. Thus, we may write the total 
quantum well susceptibility as 

eo~ - 1 5 (  z _ z ' )  + ( z ,  z ' ,  kll , X(z, z',kll ,w) - ]~- XOW ,w) (49) 

where the Dirac delta function expresses the locality of the background di- 
electric constant. In practice, the confinement function p(z) is nonzero in the 
quantum well region and vanishes into the barriers. By neglecting the barrier 
penetration of the confinement function 4, we may assume that  the quan- 
tum well region is described by the susceptibility (49), while the barrier is 
taken as an homogeneous medium with dielectric constant e~.  We neglect the 
mismatch between the quantum well and the barrier background dielectric 
constants: this can be done without any loss of generality and the dielectric 
mismatch can be included at a later stage by means of transfer matrices. 

Once the exciton susceptibility is known, Maxwell equations can be solved 
and the quantum well reflection and transmission coefficients can be derived. 

4 This is not valid for shallow quantum wells neither for very narrow quantum wells 
where the quantum well thickness is much smaller than the exciton Bohr radius 
a~ [Bastard (1989)] 
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This derivation is very clearly presented in the literature [Tassone (1990), 
Tassone (1992)] and thus will be omitted in the present notes. We give di- 
rectly the form of these coefficients, assuming one exciton level in a quantum 
well grown along the (100) axis of a material with cubic simmetry. This is 
the most common case of GaAs/AsGaAs quantum wells. In this case, ex- 
citon levels originate both from the light and heavy hole valence subbands 
and can have three different polarizations: T (transverse with respect to kll ), 
L (longitudinal) and Z (perpendicular to the quantum well plane). The de- 
tails about the exciton selection rules in these materials are neatly presented 
in [Andreani (1995)]. Here we restrict ourselves to the two lowest exciton 
levels in GaAs/AsGaAs quantum wells, corresponding to T- and L- heavy 
hole excitons. These two exciton levels obey a very simple selection rule: 
the transverse exciton couples to TE modes only, while the longitudinal ex- 
citon couples to TM modes only. With this in mind, we may report the 
reflection and transmission coefficients for a quantum well, as derived in 
[Tassone (1990), Tassone (1992)], which read 

rQw (kll, w) = - i e  ik" LQW /%a (k[I, w) 
w - ~;a(kll,w ) + i/~a(kll,w) ' (50) 

tQw(kl[,W) = eik.Lq w w -- o0a(klj,w ) (51) 
w - &~(klf,w ) + i/~(kll,W) ' 

where a = T, L labels the two different polarizations. The quantities _P~ (kl], w) 
and ~a(kll,W ) are defined as 

2 2 

47r #cviF(0)l k~P(kz) ff;T(kll'w) = w(kll) - e~tt (52) 

/~w(kll,W ) = 2~2vIF(0)l 2 
~ t ~  Q~(kz) , (53) 

2 F 2 
47r#CV I (0)[ k~P(kz) (54) ~L(kll'w) = w(kll) - eooh 

_rL(kll, w) ----- 27r ~c%lg(°)12 e~h kzQ2(k~) , (55) 

where ko 2 = (w2/c2)eoo. These quantities are the real (&) and imaginary 
(/~) parts of the correction to the exciton energy due to the coupling to the 
electromagnetic field. The meaning of a complex, w-dependent energy cor- 
rection would require an extensive discussion which is beyond the scope of 
the present notes. As a matter  of fact, the imaginary part to the exciton 
energy represents the intrinsic radiative probability per unit time that  the 
exciton acquires when coupled to the one-dimensional photon continuum la- 
beled by kz. In the same way, the second term on the right side of (52) and 
(54) is a radiative shift of the exciton energy. The fact that  these correc- 
tions are w-dependent is better understood within a quantum formalism. In 
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particular, by replacing the exciton dispersion w = w(kll), one obtains the re- 
sult of the second order perturbation theory for the exciton-photon coupling 
[Andreani (1991), Andreani (1994), Citrin (1994), Andreani (1995)], called 
exciton pole approximation. In the present semiclassical treatment, the system 
is probed with a monochromatic beam of frequency w and the w-dependence 
of the above quantities directly follows from Maxwell equations. The func- 
tions P(kz) and Q (kz) are superposition integrals of the exciton wave function 
and the electromagnetic wave, defined as 

1 [+L2--~--f+L~w s in(kz]z-z ' l )p(z)p(z ' )dzdz ' ,  (56) P(kz) - 2kz J_~2w J_n~w 

.+ LQ2W 
I 

Q(k~) = J_L~w cos(k~z)p(z) dz . (57) 

These integrals, as well as the expressions (52), (53), (54) and (55), are 
valid for kll < k0 namely in the radiative region, in which the solutions of 
the electromagnetic field are propagating waves (the situation we are inter- 
ested in). Analogous expressions hold in the nonradiative region kll > k0 
where only surface modes (evanescent waves along the z direction) can exist 
[Tassone (1990), Tassone (1992)]. Since the quantum well thickness LQw is 
usually much smaller than the wavelength, the long wavelength approxima- 
tion can be introduced for these integrals. Then, P(k~) ~_ 0 and Q(k~) ~_ 1 to 
order (k~LQw) 2. In what follows we will always assume this approximation 
to hold. 

All the previous considerations about the quantum well semiclassical re- 
sponse are supported by a vast literature (See e.g. Ref. [Andreani (1995)] 
and references therein for a very clear account of the optical properties of 
excitons in semiconductors) to which the reader can refer for the details of 
the formalism. 

By means of the results of Section 2 it is now easy to derive the transfer 
matrix for a quantum well starting from its reflectivity and transmission (50) 
and (51). The result is reported here: 

[ A~, - iF~ ik=L w i['a 
-A--~- - - e  q An 

M Q w  = , (SS)  

i/~ A a + i/~a e_ik=LQw 
A~ A m 

where Aa = w - &~(w, kll). 

4.2 Microcavity polariton spectra 

We illustrate here the basic phenomenology of the microcavity polariton op- 
tical response, in order to test the method we have introduced and to give 
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a first insight into the behaviour of our system. We will consider a )~-cavity 
with two different DBRs and a single quantum well embedded at the center 
of the spacer. In particular, the structure of the microcavity will be the same 
as in Fig. 10 with the same parameters as those used to obtain the plot in 
Fig. 13. We will consider spectra at normal incidence. The quantum well pa- 
rameters relevant to this model are three: the exciton energy at kl[ = 0, the 
exciton oscillator strength per unit area and the phenomenological exciton 
homogeneous broadening. The exciton energy is chosen to be We = 1.5 eV 
(w(kll) = We + h/(2Me)k~) in order to be resonant to the cavity mode. The 
exciton oscillator strength per unit area is proportional to the constant 

F0 2rk0 #~vlF(0)12 = , (59) 
eooh 

that  appears also in (53) and (55) and represents the exciton radiative rate 
at kll = 0 [Tassone (1990)]. We will adopt this quantity as a measure of the 
exciton-photon coupling in a quantum well. We use the parameter  typical 
of a 100 ~ GaAs-A1As quantum well hF0 = 32 #eV. The phenomenological 
exciton homogeneous broadening 7e is added as an imaginary part  to the 
bare exciton energy in (50) and (51): 0J e ~ 03e - -  i ~ e .  We leave the important  
remarks about  this replacement to the next section and consider for now the 
parameter  7e as an additional phenomenological broadening, assigning the 
value % = 1 meV. 

Fig. 15 shows the microcavity reflectance, as calculated applying the 
transfer matr ix  formalism that  we have learned so far. Comparison with 
Fig. 13 reveals the presence of two peaks in place of the originary cavity 
mode. The remaining features of the spectrum (stop band, side lobes and 
so on), are unchanged. These two peaks are the manifestation of the strong 
coupling regime between the exciton and the electromagnetic mode of the 
cavity. An enlargement of this feature in the spectrum is shown in Fig. 16, 
where the transmittance and absorption spectra (obtained as A = 1 - R -  T) 
are also shown. The two peaks are symmetrically shifted with respect to the 
resonance energy and the energy splitting is hf2R ~ 4 meV. This splitting 
is the analogous for this system of the vacuum field Rabi splitting that  has 
been known since long in atomic physics [Meystre (1992), Haroche (1992), 
Kaluzny, 1983, Sanchez-Mondragon (1983), Thompson (1992), Hood (1998)]. 
From this point of view, due to the in-plane translational simmetry, our struc- 
ture is the one-dimensional analog of a pointlike atom in a 3-D optical cavity. 
We would like to point out, however, that  this analogy holds only in the 
restricted framework of the linear regime. In particular, within the single ex- 
citation regime (one photon and one atom/exci ton in the system) the Jaynes-  
Cummings Hamiltonian [Meystre (1992)] and the Polariton Hamiltonian are 
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strictly the same. As soon as the number of excitations in the system is large 5 
the nonlinearities of the two systems are totally different and require different 
specific theoretical t rea tment  [Meystre (1992), Hood (1998), Jahnke (1997)]. 
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Fig. 15. The reflectance of a microcavity with one quantum well embedded at the 
center of the spacer. The two energy split peaks appear clearly at the center of the 
stop band. 

The  Rabi splitting can also be interpreted in terms of normal mode cou- 
pling between the exciton and the cavity modes. In this case, the one-to-one 
selection rule in the coupling between the exciton level and the quasi-discrete 
cavity mode traces back to the polariton picture in a bulk semiconductor. Our 
system is thus the 2-D analog of a bulk semiconductor and the Rabi splitting 
corresponds to the polariton splitting [Andreani (1995)]. As a mat te r  of fact, 

5 for an atomic cavity this means more than one atom or one photon in the cav- 
ity; for the excitonic system nonlinearities appear when the exciton density ap- 
proaches the saturation value 
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Fig. 16. The details of the microcavity reflectance, transmittance and absorption 
spectra. An energy splitting of about 4 meV characterizes the three curves. 

the polariton picture implies a quantum mechanical coupling, the polariton 
modes being the eigenstates of the coupled system [Hopfield (1958)]. How- 
ever, it is well known that  in the present case the quantum and semiclassical 
treatments give exactly the same results, because the exciton-photon coupling 
is quadratic in the two fields [Savona (1995), Savona (1996a)]. Thus, at least 
for the moment, the reader should feet free to use both pictures indifferently 
when describing the microcavity system. In the next section we will show 
how the microcavity polariton dispersion can be rigorously extracted from 
the present semiclassical treatment. In the end, we must keep in mind that  
we are just dealing with the system of two coupled harmonic oscillators. 

The existence of a finite Rabi splitting depends on all the parameters of 
the system: exciton oscillator strength, mirror reflectance, exciton broaden- 
ing. In Fig. 17 we show how the reflectance spectrum is modified for decreas- 
ing F0 (an unphysical situation because the single quantum well oscillator 
strength is a fixed property of the material). We see that  the splitting dis- 
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appears for a finite value of F0 and the system makes a transition to the 
weak coupling regime. We will derive in the next section the dependence of 
the Rabi splitting on all the system parameters. We remark however that in 
the linear response formalism the strong coupling is defined as the appear- 
ance of a two peak structure in the optical quantities. As a matter of fact, 
the energy splittings in R, T and A are in principle quantitatively differ- 
ent [Savona (1995)]. Only in the limit of a large splitting, compared to the 
linewidths, the splitting is approximately the same for the three spectra. Oth- 
erwise, it is even possible that the splitting is present in some of the optical 
constants and absent in the others. The distinction between weak and strong 
coupling regime may thus be ambiguous when close to the transition between 
the two. This ambiguity is still increased if we consider that the broadening 
mechanisms in reality (typically exciton-phonon coupling [Schulteis (1986)], 
disorder [Glutsch (1994), Glutsch (1996), Zimmermann (1997)] and excita- 
tion induced dephasing [Lindberg (1988), Jahnke (1996)]) do not act in such 
a simple way as our phenomenological parameter %. Even though a situa- 
tion where Rabi splitting is only present for some of the optical constants 
has never been observed experimentally, the reader should keep in mind that 
strong coupling is well defined only when the splitting is considerably larger 
than the peak linewidths. 

The two coupled oscillators picture is confirmed by the analysis of the 
spectra for varying exciton-cavity detuning. In Fig. 18 we plot the reflectance 
spectra of our system for different values of the detuning 5 = Wc - We, keeping 
we fixed and varying Wc (dashed lines). We see that the polariton peaks show 
an anticrossing behaviour typical of the two coupled oscillators. 

The first experimental confirmation of this phenomenon came in 1992 in 
the work by Weisbuch et al. [Weisbuch (1992)] who fabricated and studied the 
first microcavity system exhibiting strong coupling regime. Since then, the 
domain has grown considerably and many properties of the strong coupling 
regime have been investigated [Rarity (1996)]. 

4.3 Microcavi ty  polariton dispersion relations 

In this section we will perform a more formal analysis of the microcavity 
embedded quantum well system and derive the polariton dispersion relations 
from its transfer matrix. 

The exciton-polariton is the mixed excitomradiation mode that sets up 
in an insulating crystal close to the exciton transition. In bulk semicon- 
ductors, because of the translational invariance, each polariton state is a 
quantum superposition of one exciton and one photon mode with a given 
wave vector [Hopfield (1958)]. The polaritons in bulk are thus stationary 
states. The optical transition between the polariton and the ground state 
of the crystal can be probed because of the finite size of the sample that 
allows coupling to the external electromagnetic field through the sample 
boundaries [Andreani (1994), Sumi (1976), Ulbrich (1979), Weisbuch (1977), 
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Fig. 17. The transition from strong to weak coupling for decreasing F0 is illustrated. 

Weisbuch (1979), Weisbuch (1982)]. In a quantum well the translational sim- 
metry along the growth direction is broken for the exciton degrees of freedom. 
Consequently, one exciton with given in-plane wave vector kll is coupled to 
a continuum of photon modes with the same kll and all the possible val- 
ues of the remaining component kz. This gives rise to a situation where the 
exciton is no longer a stationary state and has a finite recombination prob- 
ability per unit time [Agranovich (1966), Andreani (1991)]. If we think of 
the system in terms of eigenstates of the exciton-photon coupling Hamilto- 
nian, these eigenstates form a continuum for each value of kll. Polaritons 
are resonances in this continuum, just like Fano resonances [Fano (1961)]. In 
this sense, polariton resonances are rigorously characterized by poles of the 
quantum mechanical exciton propagator (Green function) in the complex 
energy plane [Cohen-Tannoudji (1988)]. The real and imaginary part of the 
poles represent the "peak" position of the resonance and its linewidth respec- 
tively. This viewpoint and the calculation of the exciton-polariton dispersion 
in quantum wells have been developed by several authors in the literature 
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Fig. 18. The reflectance spectra for different values of the detuning J. The arrows 
indicate the peak positions when the peaks are only slightly pronounced. The two 
dashed lines indicate the uncoupled exciton and cavity mode energies. 

[Jorda (1993), Citrin (1994)]. When a quantum well in embedded in a mi- 
crocavity, the situation is not much different. In fact, because of the finite 
mirror transmittance, the photon modes for a given kll still form a continuum, 
even though this continuum is structured into narrow peaks corresponding to 
the Fabry-P@rot modes. The quantum mechanicM approach to the exciton- 
polariton dispersion is thus still valid and the polariton dispersion in a semi- 
conductor microcavity has been calculated recently [Savona (1996a)]. 

What  is the relation between this picture and the present semiclassical 
t reatment  of the optical response? As we already mentioned, the two ap- 
proaches are equivalent. Here, by "equivalent" we mean that  all the physical 
quantities that  are derived with one of the two approaches can also be derived 
with the other. Then, of course, the two approaches are complementary to 
each other. In fact, while the semiclassical response naturally provides the 
optical response to an electromagnetic wave, within the quantum formalism 
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the concepts of exciton radiative rate, photoluminescence and dynamics find 
a natural interpretation. The quantum well polariton dispersion can be ob- 
tained within the semiclassical formalism if one identifies the polaritons as 
resonances in the scattering process of an electromagnetic wave. Then, these 
resonances are hidden somewhere in the transfer matrix. The polariton dis- 
persion has already been derived from the semiclassical treatment in the case 
of quantum wells [Tassone (1990)], multiple quantum wells and superlattices 
[Andreani (1994)] and microcavity embedded quantum wells [Savona (1995)]. 

The resonances in our system can be derived from the poles of reflection 
and transmission coefficients, these latter being the electromagnetic scat- 
tering amplitudes. These coefficients are expressed in terms of the transfer 
matrix as in (16). We are thus going to calculate the transfer matrix of the 
system previously studied: one quantum well at the center of a A-cavity with 
two DBRs. We assume vanishing thickness for the quantum well. The transfer 
matrix of the whole structure is defined as 

MMC---- M 2 " M s ' M Q w ' M s ' M 1  , ( 60 )  

where M1, M2 are given by (27) and (29), Ms is the propagation in half the 
spacer length and is thus given by (28) where Lc is replaced by L¢/2, and 
MQw is given by (58). We are going to skip the cumbersome steps of the 
derivation and give directly the final result for the matrix element [MMc]22 
whose zeros correspond to the poles of the transmission: 

e-ik,L~ 
[MMc]22 -- - - [ i / ~ a ( 1  + rleik~L°)(1 + r2eik'L¢)] 

tit2 
+ A~(1 - r2r2e2ik'Lo)] . (61) 

In the thin quantum well limit the two integrals (56) and (57) are zero and 
one respectively, and the polariton dispersion relation can be finally written 
a s  

w - w(kll ) + i/~ (1 + rleikzL¢)(1 + r2e ikzL¢) = 0 (62) 
1 - r2r2 e2ikzL¢ 

where we should not forget that the mirror reflectivities rl,2 are actually 
function ofw and kll. Eq. (62) is exactly the same as in Ref. [Savona (1996a)] 
where it has been obtained by means of a quantum approach. 

We briefly discuss the dispersion relation as obtained numerically from 
the solution of (62) on the complex energy plane. In Fig. 19 the real part of 
the solution, corresponding to the polariton energy, is plotted as a function 
of k]]. The parameters are the same as in the previous evaluation of the po- 
lariton spectra. We must compare this figure with the plot of the main cavity 
modes in Fig. 9 and, particularly, with the plot of the leaky mode dispersion 
in Fig. 14. The first remark concerns the small wave vector region. Here, the 
exciton and cavity modes are resonant, as indicated by the dashed lines, and 
the resulting polariton modes exhibit an anticrossing behaviour, as expected 
in the strong coupling regime. In this region the two polariton resonances, 
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Fig. 19. The energy dispersion of the microeavity polaritons calculated numerically 
from (62) for TE polarization. The dashed lines indicate the uncoupled exciton and 
cavity modes, while the dashed-dotted line is the boundary of the radiative region 
n c w / c  = kll. 

from a quantum mechanical viewpoint, have maximum admixture of exciton 
and photon. Outside this region, instead, the two modes approach the uncou- 
pled exciton and cavity modes. However, the lower polariton branch shows a 
wiggling for wave vectors larger than about 0.01 nm -1. These features cor- 
respond to the interaction of the exciton level with the leaky modes of the 
microcavity structure. In each point where the exciton dispersion crosses one 
leaky mode (see Fig. 14), the exciton light coupling gives rise to a radiative 
shift analogous to the one corresponding to the Rabi splitting at kll = 0. 
Close to the boundary of the radiative region, denoted by the dashed-dotted 
line in Fig. 19, another anticrossing is present. This is due to the interac- 
tion of the exciton with a quasi-guided cavity mode. In fact, in the region 
ncW/C > kll > n2w/c the electromagnetic field can propagate through the 
layers with index nc or nl but  is an evanescent wave in the layers with index 
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n2. Consequently, the modes are still radiative but the probability of leaking 
into the substrate becomes very small. Eventually, one guided mode arises 
in this region and couples strongly with the exciton, because of its vanishing 
linewidth, giving rise to the observed feature. The calculation has been car- 
ried out only within the radiative region, where expressions (52)-(55) apply. 
The nonradiative or surface polariton modes [Tassone (1992)] have not been 
considered. In Fig. 20 we plot the imaginary part of the solutions of (62) corre- 
sponding to the polariton radiative linewidth. We see that  the two linewidths 
are strictly equal at resonance. We will show in the next section that  they 
both have half the cavity mode linewidth 6. This is a general feature of the 
strong coupling at resonance and is peculiar of the exciton photon coupling. In 
fact, the nonradiative broadening mechanisms in general act differently on the 
two polariton branches and give rise to different broadenings [Fisher (1996), 
Whittaker (1998), Savona (1997a), Savona (1997b), Ell (1998)]. The upper 
polariton linewidth coincides with the bare cavity mode linewidth far from 
resonance. The abrupt change in slope corresponds to the onset of total in- 
ternal reflection on the air side. The lower branch radiative linewidth has a 
maximum at resonance, where the radiative rate is generally enhanced with 
respect to the bare exciton radiative rate. Then the radiative rate shows sev- 
eral peaks in correspondence to the interaction with the leaky modes. This 
is a very important result. The leaky modes are strongly radiative, and the 
radiation is totally emitted into the substrate [Savona (1996a)]. In addition, 
leaky modes cover a large portion of the radiative phase space, because their 
2-D density is proportional to kl]. This is one of the major limitations to the 
design of light emitting devices, since most of the radiation is lost in the sub- 
strate where it gets absorbed. The other limitation to the internal efficiency 
is duc to the guided modes (lying in the nonradiative region) that  become 
radiative in structures with finite lateral size. Minimizing these two effects 
constitutes the key for achieving the best performance from a light emitting 
device [Benisty (1998)]. 

4.4 Usefu l  a p p r o x i m a t i o n s  

The general expression for the dispersion of the quantum well polaritons in 
an arbitrary microcavity has already been presented and solved numerically 
in the previous section. However it is useful for many applications to consider 
an approximate form of the dispersion which is derived analytically. It has 
the advantage of allowing a simple and intuitive physical interpretation of 
the behavior of quantum well polaritons as a function of the parameters of 
the system. 

6 In Expr. (62) and in what follows we have introduced no phenomenological ex- 
citon broadening. The calculation thus gives the radiative contribution to the 
polariton broadening. 
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Fig. 20. The radiative linewidth of the microcavity polaritons calculated numeri- 
cally from (62) for TE polarization. 

Our starting expression is the polariton dispersion (62). We make three 
assumptions. First, we consider values of the frequency a; close to the reso- 
nance a;c compared to the stop band width. Second, we neglect higher order 
cavity modes, since the energy separation between successive orders is much 
larger than the Rabi splitting. Third, we assume high mirror reflectance, so 
that  the approximate expressions (41), (42) and (43) can be used. Replac- 
ing these expressions into (62) for kll = 0 and performing straightforward 
algebra, we end up with the simple equation 

( w -  We + i % ) ( w -  Wc + i % )  = V 2 , (63) 

where % and V are given by the expressions 

c (1 - rlr2)(1 + rl)(1 + r2) (64) 
% = nc(Lc + LDBR) rl(1 + r2) 2 q- r2(1 + rl) 2 ' 

V2 = cFo (1 + r,)2(1 + r2) 2 (65) 
nc(Lc +LDBR) rl(1 + r2) 2 + r2(1 + rl) 2 ' 
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and rl,2 = x/~ ,2 .  Eq. (63) is simply the secular equation for the coupling 
between two damped harmonic oscillators, where the exciton damping con- 
stant % is added phenomenologically, as in Section 4.2. This is no surprise, 
since the system is made of two fields, the exciton and the electromagnetic 
one, that are bosonic in nature (thus harmonic oscillators) and are linearly 
coupled. Nevertheless, equations (63), (64) and (65) are of great utility be- 
cause they allow to roughly predict the characteristics of a semiconductor 
microcavity in a very straightforward way. In particular, by solving (63) in 
the resonant situation we = wc, the real part of the two solutions allow to 
express the Rabi splitting as 

i 1 D R  = 2 V 2  - ~ ( ~ c  - ~e )  2 • ( 6 6 )  

We see immediately that this expression provides a precise criterium for the 
existence of the strong coupling regime, namely 4V 2 > (% - %)2. There 
are however several objections that may be raised. First, the quantity DR 
here obtained is the energy splitting of the polariton resonances. This quan- 
tity is still different from the energy splitting in the spectra of the three 
optical quantities R, T and A. Thus it is possible that a strong coupling 
regime is predicted by (66) but the two peak feature does not appear in any 
of the optical spectra. This concept is discussed in detail in the work by 
Savona et aL [Savona (1995)], where approximate expressions for the split- 
ting in the optical spectra are also derived under the same approximations 
that led here to (66). One striking example of the difference between (66) 
and the energy splitting in the optical spectra can be found in the hypo- 
thetical situation of very large % and % with % ~- %. In this case, the 
difference % - % in (66) is vanishing and a finite Rabi splitting occurs. 
However, the linewidths are so large that the two peaks in the spectra will 
be completely blurred and a single peaked feature will appear instead. Even 
though this example does not imply any kind of physical paradox, as a matter 
of fact the description of the exciton nonradiative broadening here adopted 
has revealed to be oversimplified for practically all the main exciton broad- 
ening (dephasing) mechanisms, as already mentioned above. We will spend 
a few words on this problem in the last section of this chapter. We recall 
that the strong coupling regime in microcavities presents a strong analogy 
with the polariton splitting in bulk systems. In fact, being both photons and 
excitons confined in two dimensions, the quantum well embedded in a mi- 
crocavity is the two-dimensional analogous of a bulk semiconductor, with 
the only difference that the two modes have a finite energy broadening. An- 
other analogy exists with the normal mode splitting which occurs in atomic 
physics when an atomic level interacts with the electromagnetic mode of 
a cavity [Carmichael (1989), Meystre (1992), Zhu (1990)]. Expression (66), 
in fact, had already been derived in that framework [Agarwal (1984)], and 
the term vacuum field Rabi splitting has been borrowed from atomic spec- 
troscopy. Within our model, the other situation that can occur is the weak 
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coupling regime, characterized by 4V 2 _< (% - %)2. In this situation, two de- 
generate polariton resonances exist, which however present different energy 
broadenings according to the solutions of (63). The weak coupling regime 
does rot  preserve the analogy with the three-dimensional polaritons and is 
somewhat closer to the case of bare quantum well polaritons. In fact, the two 
degenerate resonances correspond to the exciton which either radiatively de- 
cays into the photon continuum or is dissipated by its nonradiative damping 
mechanism. In particular, the exciton spontaneous emission probability is en- 
hanced with respect to the bare quantum well case, because of the resonant 
interaction with the cavity mode. In the weak coupling regime, the exciton 
radiative decay can be described as usual in terms of an irreversible exponen- 
tial decay. In this case, the decay rate is the one obtained by the standard 
second order perturbation theory (Fermi golden rule). The first observation 
of enhanced spontaneous emission rate for a quantum well embedded in a 
microcavity in the weak coupling regime, dates to the work of Yokoyama et 
al. [Yokoyama (1990)], two years before the observation of the Rabi splitting 
by Weisbuch et al. [Weisbuch (1992)]. When the coupling is very weak, the 
decay probability here calculated approaches that of a bare quantum well 
[Savona (1995)]. 

In order to illustrate the transition from weak to strong coupling regime, 
we plot in Fig. 21 the real and imaginary part of the solutions of (63) as a 
function of the mirror reflectance (assuming in this case two equal mirrors). 
Varying the mirror reflectance corresponds to varying at the same time the 
effective coupling constant (65) 7 and the cavity mode linewidth (64). The plot 
is calculated at resonance and for Ve = 0. We see that in the weak coupling 
regime the imaginary parts of the solutions are not degenerate. In particular, 
in the limit of vanishing reflectance, one of the two plots approaches the bare 
exciton radiative linewidth Fo = 0.032 meV. This is important because some 
times in the literature the two coupled oscillator formula (63) is misused 
[Abram (1996)]. The error consists in considering the bare exciton radiative 
broadening (the radiative decay time of 13 ps in GaAs 100 ~l quantum wells 
[Andreani (1991), Agranovich (1966)]) as a separate broadening mechanism 
that has to be included in %. This is an erroneous approach as the present 
derivation clearly shows: the bare exciton radiative rate is naturally included 
in the treatment via the exciton-radiation coupling. In the planar system in 
fact, because of the kll selection rule, one exciton with a given kll has the 
cavity mode at the same kll as the only radiative recombination channel. The 
confusion comes from an erroneous analogy with the corresponding systems 
in atomic physics. In typical experiments on atoms, the cavity geometry is 
very peculiar [Haroche (1992)]. It is made of two spherical mirrors facing 

7 Important remark: varying the mirror reflectance does not modify the true ex- 
citon photon coupling given by the dipole matrix element. It just modifies the 
density of photon modes interacting with the exciton and, consequently, the ef- 
fective coupling constant V 2 entering in (63). 
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each other. Because of this configuration, a "stop band" with one or more 
sharp photon modes is formed in the three dimensional photon k-space.  This 
region corresponds to the solid angle spanned by the mirrors with respect to 
the cavity center. An a tom can undergo radiative decay by emitt ing photons 
in all directions. When put  inside a cavity, in particular, it can emit a photon 
into the cavity mode, in strict analogy with exciton recombination in planar 
microcavities. But  an a tom in a cavity can also radiate in free space in the 
directions that  are not affected by the cavity confinement, ro  these radia- 
tive processes, an additional independent radiative rate corresponds. Since 
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the cavity confinement involves only a small portion of the overall emission 
angle, a good approximation consists in giving this additional radiative rate 
the corresponding free space value. This picture breaks down in the micro- 
cavity system where the kll selection rule holds. Consequently, all the allowed 
radiative processes are restricted to the exciton coupling with the single cav- 
ity mode and no additional excitonic radiative rate should be included in a 
theoretical treatment of microcavity exciton-polaritons. 

The two oscillator formula turns out to be predictive for the polariton en- 
ergies, particularly in the very strong coupling regime where the Rabi splitting 
is much larger than the polariton linewidth. Unfortunately, the same model 
completely fails to predict the polariton linewidths as measured in any optical 
experiment. The problem is related to the nonradiative broadening mecha- 
nisms that should be described more accurately by means of specific models. 
We briefly review this problem and the most recent achievements in the next 
section. 

4.5 Polariton broadening 

The broadening mechanisms acting on a quantum well exciton level are 
mainly of three kinds: exciton-phonon interaction, disorder and excitation 
induced dephasing. These three effects are not, in principle, independent of 
each other. We might remark, as an example, that the exciton-phonon scat- 
tering rates [Zimmermann (1997)] and the excitation induced exciton dephas- 
ing rates [Brinkmann (1998), Brinkmann (1996)] depend on the exciton wave 
function which is strongly affected by the presence of disorder. Needless to 
say, the problem of exciton broadening is a very complex one and the present 
approach, which consisted in including a phenomenological linewidth % to 
account for the nonradiative exciton broadening, is by far oversimplified. We 
should mention that, in general, the main features of the microcavity po- 
lariton spectra in the strong coupling regime are not much affected by the 
details of the exciton broadening, provided this latter is much smaller than 
the Rabi splitting at resonance (the regime that we call very strong coupling). 
So, for example, the peak position versus detuning is very well described by 
the simple assumptions made so far. There are however some smaller de- 
tails of the polariton spectra which require a more detailed description of 
the broadening mechanisms. We are going to briefly review the three main 
broadening mechanisms and the related predictions that have been made in 
recent years. We point out that we will always be making the assumption of 
independent broadening mechanisms. In other words we will consider sepa- 
rately each broadening mechanism as acting onto an otherwise noninteracting 
exciton state. This situation, as mentioned above, is never realized and must 
be considered as an approximation whose validity has to be tested from case 
to case. 

Wc start with the broadening due to disorder. Disorder in high quality 
quantum wells mainly originates from alloy fluctuations and interface rough- 
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ness. According to the works by Zimmermann [Zimmermann (1992)], disorder 
mainly affects the exciton in-plane center-of-mass degrees of freedom. The 
relative electron-hole motion and the motion along z are only affected to 
higher order in the ratio between the average fluctuation of the confinement 
energy and the exciton binding energy. The exciton lineshape in a disor- 
dered quantum well has been studied both theoretically and experimentally 
[Schnabel (1992), Glutsch (1994), Glutsch (1996)]. In the case of microcavity 
polariton, the general idea is that the exciton-photon coupling competes with 
the klj-nonconserving interaction of the exciton with a disordered potential. 
This led to the assumption that, in order to describe the optical response, 
the two interactions had to be trated on equivalent bases. Although a full 
treatment of the two interactions [Savona (1997a)] correctly reproduced the 
measured polariton linewidths as a function of detuning [Fisher (1996)], later 
it became clear that an important approximation led much more simply to the 
same results. The idea is to assume the lineshape of a bare quantum well exci- 
ton to be given. This lineshape may have been previously calculated by means 
of a microscopical model [Glutsch (1994)], separately measured JEll (1998)], 
or defined phenomenologically [Kavokin (1998)]. Then, the semiclassical the- 
ory of the quantum well optical response is used, like in these notes, where 
the matrix element of a quantum well is convoluted with the given exciton 
lineshape. In other words, the exciton response is assumed to originate from a 
set of energy levels whose optical density is exactly given by the measured or 
calculated bare exciton lineshape. This approach is called Linear Dispersion 
Theory, or LDT for short. Whittaker [Whittaker (1997), Whittaker (1998)] 
has compared the result of LDT with the result of an exact numerical calcu- 
lation of the microcavity polariton broadening and has shown that the differ- 
ences are hardly distinguishable for realistic exciton and cavity parameters. 
Afterwards, the validity of the linear dispersion theory has been experimen- 
tally checked [Ell (1998)] by separately measuring the bare exciton lineshape 
and the polariton spectra on the same sample. Now it is well estabilished 
that LDT can be used to calculate microcavity polariton spectra whenever 
the disorder broadening is dominant on the other broadening mechanisms. 
We must mention the works by Andreani [Andreani (1998)] and by Kavokin 
[Kavokin (1998)] where an exhaustive theoretical analysis of LDT and its 
implications on the optical response is carried out. 

The physical reasons for which linear dispersion theory works well are not 
simple to explain. A handwaving argument might be the following. When the 
intracavity radiation interacts with the quantum well exciton, the amount of 
light scattered to different in-plane wave vectors due to the disordered exci- 
ton wave function is negligible with respect to the reflected and transmitted 
beams. Then, if we just need to describe the transmission, reflection and ab- 
sorption of the microcavity s, we may safely disregard any kll-nonconserving 

s Other effects, such as the resonant light scattering into directions other than the 
transmitted or the reflected one, require the inclusion in the exciton-polariton 
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scattering event. The excitonic lineshape induced by the presence of disor- 
der needs however to be included within the semiclassical treatment. This is 
done by including the disordered exciton lineshape at the level of the linear 
optical response function. This picture essentially works because the disorder 
is usually weak and particularly because the disorder is a static perturbation 
involving elastic scattering processes only. The same argument in principle 
does not hold for the two other sources of broadening, namely exciton-phonon 
scattering and exciton-exciton Coulomb scattering. In both cases, in fact, the 
exciton exchanges energy with the phonon or with the other exciton taking 
part in the scattering process. No definitive results exist for these two prob- 
lems. In the case of exciton-phonon interaction, a theoretical model has been 
developed [Savona (1997b)] in which the broadening due to exciton-phonon 
scattering is calculated within Born approximation (second order perturba- 
tion theory) starting from the microcavity polariton states. In other words, 
it is assumed that the polariton states are those which undergo scattering 
with phonons. This is a natural assumption if the exciton-phonon scattering 
rates are much smaller than the exciton-photon coupling, which is the case 
for most of the strong coupling situations. Then, it can be shown that the 
peculiar dispersion curve of the lower polariton branch is responsible for a 
strong suppression of the lower polariton broadening mechanism. This is due 
to the steepness of the polariton dispersion near kll = 0 (See Fig. 19) that 
makes the phase space allowed for polariton-phonon scattering very small. 
Consequently, for realistic values of the exciton and phonon parameters, it 
has been shown that the linewidth of the lower polariton at resonance is very 
small compared to that of the upper polariton, this latter being comparable 
to the bare exciton homogeneous broadening. Moreover, the linewidth lin- 
early increases with temperature for both polaritons, but the two slopes are 
very different: for typical exciton and cavity parameters, to the lower polari- 
ton linewidth a slope of less than 0.5 #eV/cm -1 corresponds, while a value 
larger by one order of magnitude (comparable with the bare quantum well 
case [Schulteis (1986)]) is found for the upper polariton. Although this model 
is simple and intuitive in itself and agrees ~i th the first results on microcavity 
samples of exceptionally good quality 9 [Stanley (1997)], the problem needs 
further investigation and the question whether linear dispersion theory works 
independently of the broadening mechanism still lacks of a clear answer. 

The problem of density induced polariton broadening is complex and here 
we just mention the most representative experimental and theoretical results. 
Measurements of the cavity polariton spectra under high excitation condi- 

formalism of the light scattering onto the disordered quantum well exciton at least 
to first order in the scattering matrix element [Citrin (1996a), Citrin (1996b)]. 

9 Generally, the homogenous broadening due to phonons is blurred by the disorder 
induced broadening at low temperatures. Thus, in order to quantify the homoge- 
neous broadening at low temperatures in a linear optical measurement, a sample 
with an extremely low inhomogeneous broadening is required. 
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tions have been performed under nonresonant CW excitation [Houdr~ (1995)] 
and under resonant excitation by ultrashort pulses [Jahnke (1996), Rhee (1996), 
Lyngnes (1997)]. In both resonant and nonresonant excitation experiments, 
the cavity polariton peaks broaden for increasing excitation density. At the 
same time, the Rabi splitting decreases and eventually disappears. All these 
experimental results are satisfactorily explained by the semiconductor Maxwell- 
Bloch equations including second order Coulomb scattering terms [Haug (1994), 
Jahnke (1997)]. To the author's knowledge, no experiments have been per- 
formed in which the polariton spectra are measured under selective resonant 
excitation of one polariton peak only. Under resonant excitation and moder- 
ate excitation densities, the important broadening mechanism is the exciton- 
exciton Coulomb scattering [Ciuti (1998)]. Translated into the microcavity 
polariton system, due to the peculiar dispersion of the lower polariton, we 
may expect that the polariton-polariton scattering is strongly suppressed at 
the bottom of the lower polariton branch, in analogy with broadening due 
to exciton-phonon scattering. A first experimental evidence of this effect has 
recently been reported [Baumberg (1998)]. In this measurement, however, 
the observed linewidth suppression is very small compared to the theoreti- 
cal expectation. This first experimental result should thus stimulate further 
detailed measurements of this phenomenon. 

5 The  quantum treatment  and the  quasimode 
approximation 

The semiclassical treatment of the optical response of excitons in semicon- 
ductors, and in particular of microcavity polaritons, covers a large portion of 
the physics of these systems. It allows to derive quantities like the polariton 
dispersion and radiative rates which are usually assumed to be contained only 
in a full quantum treatment. In addition, a semiclassical formalism that in- 
cludes Coulomb interaction between carriers to a more general extent than the 
simple electron-hole bound states, namely the semiconductor Maxwell-Bloch 
equations [Haug (1994), Lindberg (1988)], have had great success in the past 
ten years in describing the nonlinear phenomena in the optical response under 
high excitation regime. However, there are some physical phenomena that go 
beyond the semiclassical treatment and require a full quantum approach to be 
modeled. The most important of these phenomena is of course the photolumi- 
neseence. In a photoluminescence experiment, the system is initially in some 
excited configuration induced by means of an external perturbation (laser 
excitation or carrier transport) and then decays to its ground state giving 
rise to spontaneous or stimulated emission of light. This process is accom- 
panied by relaxation through Coulomb interaction within the electron-hole 
system and through the interaction with other excitations, like phonons or 
impurities. It is clear that the situation depicted here requires a full quantum 
treatment of the exciton and photon fields. 
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In what follows we briefly recall the second quantization of the one- 
dimensional electromagnetic field described by Eq. (3) and write the Hamil- 
tonian for the linear exciton-photon coupling. Then, we introduce a very 
useful approximation frequently used in the quantum models involving con- 
fined electromagnetic field: the quasimode approximation. By means of this 
approximation, one can treat the cavity mode as a discrete energy level and 
include the finite transmission of the cavity mirrors as an imaginary part in 
the time evolution of the cavity mode operator. 

5.1 S e c ond  q u a n t i z a t i o n  o f  the exc i ton and cavity modes  

The exciton field can be expressed in second quantization through the Bose 
operators .4k,i and/i~,[ obeying the commutation rule [Ak,,, Atk;i ] = 5k,,kl, 10 
The exciton Hamiltonian is thus 

Hexc = ~ hw(kll)A~,Ak,, 
kll 

(67) 

In order to express the electromagnetic field in second quantization, we 
must choose an orthonormal set of modes as a basis for the canonical quan- 
tization. We take the modes already used in Chapter 2 for the Fabry-Pdrot, 
that  we depict in Fig. 22. The modes are 

l eik(~ ')z + R(kll , w)e -ik(~)z z E I 
Ukll,~(z) = wf~nc2 I(kll,w)e ik,z + J(kll,w)e -ik'z z E I[  

V ~ T(kll,w)eik! r)z z e I I I  

~'kH,~(Z)---- ~ / T--(kll'w)e-ik(~"z z e I 
V ~ L :(-k2!'):)e-ik: + J(kl['w)eik'* z E I1 

+/~(kll , w)e ik(:)z z E I I I  

, ( 68 )  

(69) 

Regions I, I I  and I I I  are defined in Fig. 22, (k(J)) 2 = (w2/c2)n 2 - k~, 
(k(")) 2 = (~2/c2)n~ - k~ and kz 2 = (w2/c2)n 2 - k]. These modes may be ob- 
tained by imposing Maxwell boundary conditions at the two mirror bound- 
aries. The task is simplified by the use of transfer matrices (27) and (29). 
The problem is thus reduced to the solution of a set of four linear equations 
for the coefficients R(kll , w), T(kll , w), I(kll, w) and J(kll, w). In the following 
we will be interested in the explicit expression of the two coefficients I and 
J for the intracavity field, that  we report here: 

10 This is a Kroeneker delta symbol. In fact, for the two in-plane directions, we 
use a quantization on a finite surface S, both for the exciton and for the photon 
modes. The k~ variable, on the contrary, is quantized in the continuum limit. 
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kz (l) tl(kll, w)e i(kz-k~'))L°/2 

I(kll'W) -- kz 1 - - -r l (k l l ,W)r2(kl l ,W)e2i~.Lo ' 

J(kll , w) = r2 (kll, w)I(kll, w)e  ikzLc , (70) 

k (r) t2(kll ,w)ei(k.-k(~r))L¢/2 

f(kll 'w) = kz 1 - r l (k l l ,W)r2(kj l ,w)e2ik~L~ ' 

ff(kll, w) = rz (kll, w)-T(kll, w)e ik'L¢ (71) 

Here, rt,2 and tt,2 are the two DBR reflection and transmission coefficients. 
The modes defined in this way obey the orthonormality condition in the w 
variable [Ley (1987), Savona (1996a)]. We can thus write the vector potential 
in second quantization form as 11 

, /  fo ~ hC2 ^ A(r,  z) -- ~ ek,, dw ll .q,,,._(akll,wUkll,~v(z ) + atkll,wU~li,w(z))e ik"'r , 
k}l 

(72) 
where ek, is the electric field polarization, S is the in-plane normalization 
surface and ak H ,w is the photon Bose operator obeying the commutation rule 

[&kll, ~ ^t ' %11 '~'] = 2~r6(w - W')3k, ,kil. Obviously, the Hamiltonian of the photon 

field is 

/5 Hem = E dw hwa~,,,~akl,,~ , (73) 
kll 

The linear exciton-photon interaction Hamiltonian is 

/5 Hz = E dw iCkl,.w(ak,,w + a~ kH,w)(A--kl, -- AtkH ) , (74) 
kll 

where the interaction coefficient is expressed in terms of the exciton envelope 
function and dipole matrix element, defined in the previous chapter, as 

Ck,,,~, - -  w ( k l ' )  "~.-.F(O)~ " l ~ e ~  f dz Ukll,W(Z)p(Z ) . (75) 
nc J 

We have neglected the so called A 2 interaction term [Savona (1996a)] which 
enters the interaction Hamiltonian and is known to give a negligible contri- 
bution to the cavity polariton dispersion. The diagonalization of this set of 
Hamiltonians gives exactly the polariton dispersion equation (62), as already 
observed [Savona (1996a)]. 

In order to introduce our quasimode approximation, we now focus on a 
simplified situation with equal mirrors. Moreover, we assume that  the spacer 

11 From now on it is implicitly assumed that every sum over the photon modes spans 
both U and / )  modes. Moreover, a polarization index is not explicitly indicated 
and the sum over different polarizations is always assumed. 
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mode U(z) 
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/ 

mode U(z) 
Fig. 22. The left and right propagating modes of a Fabry-P6rot, denoted by U(z) 
and U(z) respectively in the text. The materials in regions I, II, III ,  have refraction 
indices nl, nc, and nr respectively. 

refraction index is equal to the external refraction indices on both sides, 
namely nc = nl  = n2. Under these assumptions the cavity is symmetric 
under space inversion along the z coordinate and the modes U and U are 
obey U(z) = U(-z ) .  Correspondingly, the coefficients I and J are given by 

I(kll,w ) = t(klF, w) 
1 - r2(kll , o2)e 2 ik ,L¢  ' 

J(kll , w) = r(kll ,w)I(kii, w ) e  ikzn¢ , (76) 

where r and t now denote the reflection and transmission coefficients of both 
mirrors. We now introduce a change of basis within each two dimensional sub- 
space of modes with given kll, by defining the symmetric and antisymmetric 
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modes: 

U(S) _ U + , (77) 

_ v - 0 (78) 

= V ~ ( I  - J)sin(kzz) 

We may write the vector potential field in terms of these modes by defining 
the two new Bose operators 5 (8) and 6(~) in an analogous wav. We now 

kll ,w kll ,w 
restrict to kll = 0 and drop the in-plane wave vector index for clarity. 

+ ((I(w)-J(w))6 (~) + h.c.) sin(Wncz)] (79) 
\ C / J  

The corresponding electric field operator is given by E = -(1/c)(OA/Ot). 
The time dependence of the photon operator is h(t) = 6(0)e i~t and 6 ?(t) = 
6?(0)e -iwt. Then we easily obtain 

E ( z ) = i e  da~ 2v/~-~c~ [((I(a,,)+J(a~)) fi~ s ) -  h.c.)cos,  c z j  

sin (Wncz)] ( 8 0 )  
\ / \ C / J  

These expressions contain no approximations and represent the z-dependent 
part of the vector potential and electric field operators for the symmetric 
structure we are considering. In the next section we will compare these ex- 
pressions with the approximate ones obtained from the quasimode formalism. 
This comparison will allow to univocally define the quasimode coupling co- 
efficient in the limit of high mirror reflectivity. 

5.2 T h e  q u a s i m o d e  a p p r o x i m a t i o n  

We consider again the symmetric microcavity defined in the previous section. 
Because of our assumption of high reflectivity mirrors, as a first approxima- 
tion we consider ideal totally reflecting mirrors, namely r(w) = 1. In this 
situation, the electromagnetic field inside the resonator and the one outside 
the resonator are totally decoupled. They thus can be described as two dis- 
tinct fields. Taking into account the lowest cavity mode and neglecting all 
higher order modes, the electric field inside the spacer reads 
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• /2~rhc2wc E(z) ( < -    )cos (nC Cz  , (81) 
v k C / 

where ac is the Bose operator for the discrete cavity mode at kit = 0. Since 
we have assumed reflectivity equal to one, with zero phase change upon re- 
flection, only symmetric modes exist inside the cavity. In the realistic situ- 
ation of finite mirror transmission, the antisymmetric mode is strongly sup- 
pressed close to resonance, as can be seen by comparing the field strengths 
II(w) + J(w)[ and II(w) - J(w)l appearing in expressions (79) and (80). The 
corresponding Hamiltonian is 

gcav = h We a~ac . (82) 

The external electromagnetic field is represented by a continuum of photon 
modes that we denote with the Bose operators/~, obeying the commutation 
relation Ibm,/~,] = 2~5(w-  w'). For the present treatment we do not need 
to specify the spatial dependence of these modes. The Hamiltonian for the 
external electromagnetic field reads 

Hext = / d w  ~ b~,~ , (83) 

The quasimode approximation [Barnett (1988)] consists in introducing 
the finite mirror transmission through a phenomenological linear coupling 
Hamiltonian between the field inside and outside the resonator. This is a 
standard technique in the theory of laser operation and, as we will see later, 
largely simplifies the equations for the time evolution of the quantum opera- 
tors (Heisenberg equations of motion). The form of this coupling is expressed 
through the Hamiltonian 

/ d w  [v(w)acb~ + v'(w)5~D~] , (84) 

where v(w) is the still unknown coupling coefficient which is assumed to 
be complex valued and frequency dependent. The problem defined by the 
three Hamiltonians (82), (83) and (84) is a typical problem of a discrete 
state coupled to a continuum. It can be diagonalized analytically using the 
standard Fano approach [Fano (1961)]. The operators corresponding to the 
eigenmodes of the total Hamiltonian H = Hca~ + Hext -~- Hqm are mixed 
modes of the two fields written as 

a~ = ~(W)5c + f Z ( w , J ) b ~ , d J  , (85) 

where the coefficient (~(w) is given by [Fano (1961)] 

(86) 
a(w) = 7l[v(w)l 2 + i(w - Wc - F(w)) 
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and 
Iv(a)')l 2 F(a)) = 79 / da)' (87) 
09 - -  a )  I ' 

with 79 denoting the principal part. In this formalism, the operators ~ denote 
the eigenmodes of the total electromagnetic field, originating from the finite 
mirror transmission According to the Fano theory, the inverse transformation 
which gives the operator &c in terms of the operators fi~ is simply expressed 
in terms of the complex conjugate of the coefficient a(w) as 

tic = da) 7rlv(w)l 2 _ i(w - a)c - F(~))  a~ . (88) 

Inserting this equality into the expression (81) for the intracavity field we ob- 
tain the expression of E(z)  in terms of the field operators a~. This expression 
reads 

E(z) = ie / da) ,/2.he a)c ( 
V \Trlv( )l 2 F(a))) - i - ( -w--a)c - (z~ - h .c .  ) 

× cos ("ca)cz) /89) 
\ c ] 

The approximation implied by the quasimode formalism appears clearly in 
this expression for the electric field operator,  where all the field eigenmodes 
have the same spatial dependence inside the cavity. This is approximately 
valid only if the photon density of states is strongly peaked around the cavity 
resonance. 

The coupling coefficient v(a)) in the quasimode approach is determined 
by comparison of Eqs. (89) and (80) 12. Of course, we neglect the asymmetric 
field part  in (80) because we are assuming that  it vanishes with respect to 
the symmetric part,  close to resonance. In order for the two expressions to 
be equal, we must have 

7rhc2 = hv/-h~cw (I (w)  + J(a))) V(O3) O3 c 

V ~lv(a))l 2 - i(a) - Wc-  F(w))  

= vfh ca) . (90) 
1 -- r(a))e ik'Lc 

We must not forget, however, that  our approximation is valid only for high 
mirror reflectivities. We may thus develop the denominator on the right side 
of (90) to first order around the resonant cavity frequency. By introducing 
the complex representation r(w) = [r(w)l ei¢(~), we get 

12 In Eq. (80) the integral runs over positive frequency values, while the Fano for- 
malism used in the present section involves integrals over the whole a) axis. This 
difference can be overcame by extending the field (80) to negative frequencies 
and properly renormalizing the quantities under integral. It may be verified that 
this amounts to keeping the same expression (80) divided by V~. 
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 lv( )l - i( o - - 
(91) 

~ / 
-- V 21rncLc 

(1 - ]r (w) t )n~c  - i ( W - W C + n - - ~ O ( w ) )  

It turns out that the equality (91) is satisfied by the following expressions for 
v(w) and F(w) 

v(w) = ~2rn-~c  t(w) , (92) 

F ( w ) -  c ¢(w) . (93) 
nc Lc 

The last step consists in checking the consistency between the pair of relations 
(92) and (93) and expression (87) which derives from the Fano treatment. 
We perform this check explicitly using the Kramers-Kronig relations for the 
frequency dependent reflection and transmission coefficients [Bassani (1983)]. 
The Kramers-Kronig relation that links the argument and the modulus of the 
reflection coefficient is given by 

¢(w) = - 2 w p  dw' in Ir(~')] 
{Mr2 _ ~ 2  

(94) 

Introducing R(w) = Ir(w)l 2 and T(w) = It(w)l 2, and assuming that n(w) _~ 1 
in the frequency region of interest (close to the singularity in (94)), we may 
write 

¢(w) ~_ w p foo dw' IT(w')l (95) 
J o  wt2 _ ~ 2  

Turning the integral into an integral from -oe  to +oo with the assumption 
IT(-w)l = IT(w)l, we finally get 

l p  f+oo dw' lt(w')l (96) 

which corresponds exactly to the consistency condition we were looking for. 
To resume, we have assumed that the intracavity field and the external field 
are distinct in the limit of vanishing mirror transmission. For a small but finite 
transmission, we have introduced a linear coupling between the two fields. We 
have diagonalized the Hamiltonian for the coupled system and compared the 
density of photon states with the exact one. This comparison, together with 
the requirement for causality introduced by means of Kramers-Kronig rela- 
tions, has allowed to univocally define the quasimode coupling coefficient in 
terms of the mirror optical constants. A further remark concerns the specific 
case of DBRs, where the argument of the mirror reflectivity depends linearly 
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on frequency according to (42). By inserting (42) into (87) and assuming con- 
stant reflectance R, some algebra shows that  the whole quasimode formalism 
can be rewritten in terms of a frequency independent quasimode coupling 
coefficient 

v 2 _  c 1 - R  (97) 
27r ncLeff ' 

provided that  we assume an effective Fabry-P@rot thickness 

Left = Lc + LDBR • (98) 

This replacement must be done in particular in the expression for the intra- 
cavity field (81) and in all those that  follow. Of course, for this frequency 
independent quasimode coefficient, the frequency shift F(w) is strictly zero. 

The true advantage of this formalism stays in the comparison between the 
quasimode coupling coefficient v and the cavity mode broadening 7c (44). It 
turns out tha t  

v 2 = % (99) 
7r 

namely that  the coupling coefficient between the inner and outer regions is 
proportional to the escape rate of a photon from the cavity. 

This result is intuitive at first view. It states that,  in our artificial picture 
describing the electromagnetic field as two distinct fields, their linear coupling 
must be proportional to the cavity photon escape rate. The purpose of this 
section was to prove that  this result is rigorous in the limit of high finesse for 
the DBR microcavity. As a mat ter  of fact, this result is very important  for 
practical application. In fact, now we are allowed to t reat  the external photon 
continuum as a reservoir and perform any kind of quantum calculation using 
the discrete cavity mode only. This implies a substantial simplification in the 
calculations. As a first example, we may write the master equations for the 
cavity mode, assuming a "cold" reservoir, namely zero photons in the external 
field. Physically, this is the correct assumption when we are interested in 
the spontaneous emission only. The density matrix of the reservoir is thus 
aR = 10){0], where 10) denotes the empty state of the external field. Applying 
the st~.ndard master equation formalism [Cohen-Tannoudji (1988)], we end 
up with the following equations for the density matrix ai d describing the 
intracavity field mode 

dam 
- F a r o  , (100) 

dt 
da00 

- -  + F a l l  , (101) 
dt 

F 
dal0 _ i(~c + A)al0 - ~-at0 , (102) 

dt 

where the quantities A and F are expressed in terms of the interaction Hamil- 
tonian as 
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r =  L(x ,oct qmlo ,1c)125( o-  oc), (lO3) 

A = -~lp/  dw [(lw' 0c[Hqm[0w' l c ) [ 2 h W c  - 5w (104) 

These quantities are the energy damping and shift of the discrete level due 
to the coupling with the reservoir continuum. Simple calculations show that  
A = 0, because of the principal part integration over the quantity v 2 which 
does not depend on w, and F = 27c. Thus, the decay times for the population 
of the cavity mode and for the coherence between the cavity mode and the 
vacuum state are correctly accounted for by our quasimode approach. 

When writing a quantum model which includes the coupling to the exciton 
level, the coupling can be expressed in terms of the intracavity discrete photon 
mode as 

Hpol = V(AS~c + A*ac) , (105) 

where A and A~ are the Bose operators for the exciton level 13 and V is the 
coupling coefficient derived in the previous chapter. 

The next section is devoted to a model of microcavity polariton photolu- 
minescence that  we develop as an example of application of the concepts and 
tools learned in this chapter. 

5.3 Simple model  of microcavity photoluminescence 

One of the most direct optical characterizations of exciton and polariton 
states is the measurement of the photoluminescence spectrum under non 
resonant excitation. In this kind of experiment, the system is excited at en- 
ergies much higher than the exciton level. The system then relaxes down 
to the radiative levels which emit light. The relaxation process is in general 
very complex and involves several different mechanisms. At low excitation 
densities, the most important mechanism is the exciton scattering through 
absorption or emission of optical and acoustic phonons [Piermarocchi (1996)]. 
In particular, for low enough temperatures only the acoustic phonon modes 
are thermally populated and consequently only acoustic phonon scattering 
processes can take place. In typical GaAs quantum wells, this situation cor- 
responds to temperatures lower than about 50 K [Piermarocchi (1997)]. We 
want to describe the photoluminescence spectra in this regime of physical 
parameters. The main steps of relaxation and radiative recombination are 
illustrated in Fig. 23. 

The first step is the exciton formation process. By means of carrier-carrier 
and carrier-phonon scattering, the free carriers created by the initial excita- 
tion form exciton bound states. This process is quasielastic at low temper- 
ature and excitation density [Piermarocchi (1997)] as shown in the picture. 

13 for a given kll. We remark that until now we have never considered a situation 
in which different in-plane wave vectors are coupled to each other. Then, the 
microcavity polariton problem is separate in the kli variable. 
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Fig. 23. A sketch of the excitation, exciton formation and relaxation processes in 
a photoluminescence experiment under nonresonant excitation. 

The formation process is also very rapid compared to the characteristic time 
of the acoustic phonon relaxation that follows. This relaxation process brings 
the exciton population to the radiative region where a competition between 
radiative recombination and further relaxation takes place. Several effect have 
to be considered at this point. First, the leaky modes described in the previ- 
ous chapter act as a sink for the exciton population, because a large part of 
the excitons recombine by emitting photons through the leaky mode channels 
[Tassone (1996), Tassone (1997)]. The remaining excitons further relax and 
eventually reach the strong coupling region where the slope of the lower po- 
lariton branch suddendly increases. This increased slope dramatically slows 
down the relaxation to lower kll, giving rise to the so called "bottleneck ef- 
fect" [Tassone (1997)]. In addition, the radiative recombination rate within 
the strong coupling region is very fast in typical samples, being of the order 
of 1 ps as inferred from the radiative rates calculated in the previous chapter. 
The radiative recombination turns out to be much faster compared to the 
relaxation timescale which is of the order of 100 ps [Piermarocchi (1996)]. 
This implies that, in a stationary regime like under CW excitation, the po- 
lariton population builds up at the bottleneck level while the polariton levels 
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in the strong coupling have, on the average, a vanishing population. This 
very qualitative picture is supported by several theoretical and experimen- 
tal investigations [Tassone (1996), Tassone (1997), Sermage (1996)]. For the 
purpose of the present treatment, the important feature is the buildup of the 
population at the bottleneck. Since we want to describe a situation under sta- 
tionary CW excitation, we will neglect all the details of the relaxation and 
formation processes and assume that the population is peaked right above 
the bottleneck region. 

Another important feature of a realistic quantum well is the inhomoge- 
neous broadening of the exciton level. We have already discussed the implica- 
tions of inhomogeneous broadening and the problem of its inclusion in a mi- 
crocavity polariton model. Here, we will make one step further and introduce 
the linear dispersion theory, previously mentioned, at the level of our quantum 
treatment. In practice, we will assume a set of exciton levels with different 
energies at kll --- 0, whose optical density (oscillator strength) is weighed by a 
Gaussian lineshape 14. We point out that in reality the presence of disorder- 
induced inhomogeneous broadening implies a partial lifting of the kll selection 
rule. Then, our picture of the formation-relaxation mechanisms is in principle 
oversimplified and a much more complex scenery must be employed to cor- 
rectly describe the photoluminescence process [Zimmermann (1997)]. In par- 
ticular, relaxation can occur between the closely spaced energy levels within 
the inhomogeneous distribution (the so called spectral diffusion) and the dy- 
namics of the photoluminescence process can be consequently modified. The 
model that we are going to present is based on a much simpler assumption 
concerning inhomogeneous broadening. An a priori justification might come 
from the assumption of small inhomogeneous broadening with respect to the 
Rabi splitting. In the end, however, the only valid justification comes from 
the comparison with existing experimental results which will turn out to be 
quite satisfying within the range of parameters considered. 

We illustrate in Fig. 24 the different sets of bosonic levels considered in 
the present model. The model consists in a set of bosonic levels, distributed 
in energy, representing the exciton levels at kll = 0. In order to simplify 
calculations, this energy distribution as well as those related to the phonon 
bath and to the external photon continuum will be assumed as continuous. 
Then, the exciton levels are described by the Bose operators A~ and A~ and 
the bare exciton Hamiltonian is 

Hexc = f d w  ~ ALA~ . (106) 

All the integrals in the variable w are performed in the interval [-oc, +co]. 
The cavity mode has frequency Wc and is described by the Hamiltonian 

H¢ = t~zc (~fc&c , (107) 

14 It will appear from the equations that the same treatment can be developed 
without additional difficulties using an arbitrary exciton lineshape. 
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where ac and ac t are the corresponding Bose operators. We further consider 
the external photon continuum, whose interpretation has been given in the 
section on the quasimode formalism, a continuum of levels representing the 
acoustic phonon bath and one discrete level at energy hO) b that represents 
the population buildup level in the bottleneck region. The corresponding 
Hamil~onians are analogously defined as 

Hext - f dw ~ / ~ b ~  , 

Hph = f dw hw ~ , 

Hb = hWb b*/9 , 

(108) 

(109) 

(110) 

where the operators b~, ~ and D are the corresponding annihilation opera- 
tors. 

Cavity 

i 

Photon Cavity Exciton Phonon Bottleneck 
continuum mode levels bath level 

A A A A A 

ao~ a c A~ co~ D 

Fig. 24. The different levels considered in the calculation of this section are sketched 
here. The picture suggests the assumption of a thermalized phonon bath, employed 
in our derivation. 

Three distinct interactions are assumed. First, the quasimode interaction 
between the intracavity and external photon modes, given by the Hamiltonian 
(84). ~econd, the polariton interaction between exciton and cavity modes. 
This interaction is described by a generalization of (105) that takes into 
account the inhomogeneous broadening in the optical coupling as 
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= hV f dco a(w)[gcAt~ + gztcAw] , (111) Hpol 

where the function a(w) describes the weight of the different exciton levels 
in the optical coupling and is defined as 

1 _ ~ -  1/2 
a(w)= ~ e  2"gob (112) 

Here, hwo is the central exciton energy and 7inh is the inhomogeneous broad- 
ening parameter. The coefficient a(w) redistributes the exciton oscillator 
strength over the broadened exciton line and satisfies the normalization con- 
dition f dw a 2 (w) = 1. The third interaction is given by the scattering process 
that  brings the excitation from the bottleneck level to the radiative polariton 
levels through phonon emission and absorption. The corresponding Hamilto- 
nian is 

/-/scat = h f dw f dw'~(w)a(w')[D~A~ + D~/lt~ + JDt~i~ + [)t~]t~] , 
, /  , ]  

(113) 
where a(w) is the inhomogeneous exciton distribution (112) which accounts 
for the density of exciton states. The function ~(w) is a scattering matrix 
element whose form will be specified later. The first two terms in square 
brackets describe the transfer of excitation from the bottleneck level to the 
exciton levels by means of emission and absorption of a photon respectively. 
The two other terms are the reverse processes that  bring the excitation from 
the exciton levels to the bottleneck level. 

We work in the Heisenberg representation, thus all the creation and anni- 
hilation operators are time dependent. The total Hamiltonian of the system 
is then used to obtain the Heisenberg equations for these operators, according 
to the formula for the time evolution of an arbitrary operator 0 

d 0 _  =[1 0 H i . (114) 
dt ih" ' 

The Heisenberg equations for the time evolution of the cavity operator & the 
exciton operators fi,~ and the external photon continuum &oo are given by 

glc(t) = iV f dw a(w)A~(t) - iv f dw b~(t) , (115) 
J J 

-iwc&c(t) - 

A~(t) = -iwA~,(t) - iVa(w)Sc( t )  (116) 

f (t) + (t)] ia(co) 

-iwb~o(t) - iv ac(t) • b~(t) = 

(nr) 

( 1 1 8 )  

Two further equations could be derived to describe the time evolution of 
operators/9 and e~. Our next assumption consists in neglecting the memory 
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of the interactions on these levels and considering their evolution as free. 
Thus we have 

/)(t) = Doe -i~bt , (119) 

~ ( t )  = ~0,~e -i~t (120) 

It could be shown that these assumptions are equivalent to the usual approx- 
imation, made within the master equations formalism, that the time evolu- 
tion of the density matrix for the reservoir is not affected by the interaction 
with the system. This is a standard assumption for the phonon reservoir 
[Cohen-Tannoudji (1988)]. For the bottleneck level, instead, it corresponds 
to the physical assumption of stationarity of the system: the population of 
the bottleneck level is kept constant by the CW excitation. 

Integration of Eqs. (117) and (118) gives 

fo t t " ' ~ - i w t  
b~( t )  = - i v  d t ' ~ c ( t  )e '~(t - t )  + Oo,~e , (121) 

f ~ , ( t )  = - i V a ( w )  ~A÷t~'~c~,~tt"~'~iw(t'-t)j~ + AO,w e ;  - i w t  

-i&(w) fotdt'f dJ~(w')b(t')[a~,(t')+ a ~ , ( t ' ) ] e  ~ ( t ' - t )  , (122) 

where bo,~ and/i.0, ~ are the corresponding freely evolving operators at t = 
0 and represent the "initial condition" for the solution of the operatorial 
equations. They are necessary because they preserve the Bose commutation 
rule, but they do not contribute to the expectation values calculated in what 
follows. 

By placing these two expressions in Eq. (115), some straightforward alge- 
bra leads to the following Langevin equation for the cavity mode operator 

~0  t 72nh(t-- t ')2 
= e-,(,~o ,-d(t ~)ac(t) (123) gtc(t) -i(wc - i%)&~(t) - V 2 d t '  e -  ~ - - "  ^ ' 

- iv dwOo,~e - iV dwAo,wa(w)e -iwt 

-iV f dw f dw%2(w')fi(w) 
x [ e - i ( w b - w ) t  -- e-i(w'-iT)t 

L + 
e - i ( w b + " : ) t  - -  e - i ( w ' - i T ) t  ~ 1 

02 b + (.d - -  CO t + i 7 Doc-o,wJ , 

where the relation (99) for the coefficient v was used. We remark that, in 
addition to the inhomogeneous exciton distribution, we have included an ad- 
ditonal small exciton homogeneous broadening through the quantity 7, which 
was added to the energy of each exciton level. This completes our descrip- 
tion of the bare exciton lineshape which is now given by a convolution of 
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the Gaussian lineshape a2(w) and a Lorentzian of width 7. Since we want to 
obtain a result for the luminescence under stationary conditions, we look for 
a stationary solution of Eq. (123). Thus, we let to zero the terms with the 
broadening ~f appearing in the exponentials and we make the ansatz (we ne- 
glect the terms proportional to b0,~ and A0,~ because, as already mentioned, 
they do not contribute to the final result) 

lira 5c(t) = ~(~)b05t0 ~e -i(~b-~)~ + ~(w)D0~0 ~e -i(~b+~)~ (124) 
~ - - ~ ( ~  ~ , 

By replacing this expression into (123), one finally gets the following result 
for the two unknown functions ~(w) and ~(w) 

v ~ _ ( w ) ~ ( ~ )  ( 1 2 5 )  
~ ( ~ )  = ~ b  - ~ - ~ + i7~  - V 2 ¢ - ( ~ )  ' 

V o + ( ~ ) / ~ ( ~ )  ( 1 2 6 )  
~(~) = ~ b  + ~ - ~ ¢  + i'yc - -  V 2 a + ( ~ )  ' 

where 

a~(w) -= / dw' a2(w') (127) 
02 b -~- W - -  O J  "~- i7 

The frequency spectrum of a light emitting system is calculated, according 
to the theory of the physical spectrum of light [Eberly (1977)], from the two- 
times correlation function of the electric field 

:D(T) = (E (-) (t). E (+) (t - T)) , (128) 

where (---) indicates the trace over the density matrices of the phonon bath 
and the bottleneck level, and the superscripts "+" and "-" denote the positive 
(annihilation operator) and negative (creation operator) energy terms in the 
quantum field. In particular, we can calculate the intracavity electric field (81) 
using the solution (124) because the external field is simply proportional to 
the intracavity field through the quasimode coefficient. We assume a thermal- 
ized phonon bath and a bottleneck level in a pure state with occupation num- 
ber N. The first assumption implies a density matrix flph ---- f dwfi~d~ 10)(0Its, 
where ~ is the Bose distribution. The second one has the physical meaning 
of a stationary situation in which the population of the levels in the bot- 
tleneck region is kept constant by the relaxation from higher wave vectors. 
The spectrum of the emitted light is given [Eberly (1977)] by the following 
expression 

I(w) = 2Tie dT'D(T)e -iwv (129) 

An explicit expression for this latter quantity can be obtained after some 
straightforward algebra using the equations derived in this section. We give 
only the final expression for the luminescence spectrum 
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I (~)  oc N[(~(Wb--W)+1)I~(Wb--W)I20(Wb--W)+~(W--Wb)l¢(W--Wb)I20(W--Wb)] , 
(130) 

where 0(w) is the Heavyside step function. 
A few remarks can be drawn from this result. First, the overall emitted 

intensity is proportional to the population of the bottleneck level, which is an 
obvious consequence of the assumption of stationarity. Then, we see that  the 
spectrum is given by the sum of two contributions, one for frequencies lower 
than ~b and the other for frequencies higher than Wb- These two contributions 
correspond to the two processes of scattering through phonon emission and 
absorption respectively. In fact, they are proportional to the factors ~ + 1 and 
~. In the present model, thus, the excitation is transferred from the bottleneck 
level to the radiative polariton levels through the absorption or the emission 
of a phonon of the thermal bath. The approximation of free evolution of the 
phonon and bottleneck level operators implies also that  the scattering in the 
opposite direction, from the radiative levels to the bottleneck level, is ne- 
glected. This approximation is valid for sufficiently low temperatures and for 
fast polariton recombination rate compared to the scattering rate. Before de- 
riving the limits of validity of the model, however, we discuss the form of the 
coefficient/3(w) which appears in (113). First, from the scattering Hamilto- 
nian it turns out that/3(w) has the dimensions of the square root of an energy. 
The correct form for this coefficient can be deduced from a microscopic model 
for the exciton-phonon scattering described in Ref. [Piermarocchi (1996)]. In 
turns out that  the scattering coefficient is proportional to the square root 
of the exchanged momentum ]q] in the true scattering process and, conse- 
quently, to the square root of the exchanged energy. We can thus assume 
that/3(w) =/30w½, where/30 is a c-number. We see from (130) that,  accord- 
ing to our approximations, the spectrum does not depend on /3o t5. At this 
point, an estimation of the validity range can be made by remarking that  
the first correction to expressions (119) and (120) is proportional to /3(~). 
Consequently, a term of the order of V/30 z would appear in (123). This term 
has to be much smaller than the last term of (123), which is proportional to 
V/30. The estimate however can be obtained only after the thermal average 
of the operators is computed. It is then easy to show that  the condition of 
validity is given by 

/30vZ~ << 1 , (131) 

where ~ is the average number of phonons in the bath at a given tempera- 
ture. The quantity/30 can be estimated as follows. The polariton scattering 
coefficient is approximately given by/3~ AE~,  where we indicate with A E  the 

x5 Actually, it can be shown that the overall expression for the spectrum is pro- 
portional to Bo. This factor is important only when we compare the emitted 
intensity for different values of the other parameters. This model, however, is not 
able to predict absolute emission intensities, as will be discussed at the end of 
the section. 
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exchanged energy. This coefficient is known for most semiconductor materi- 
als. In the case of GaAs quantum well excitons, it has been measured and 
amounts to 5#eV/K • T [Schulteis (1986)]. The Bose occupation number at 
low temperature is 5 _~ kBT/AE. By comparing the approximated expression 
fl~AE~ with this measured value, one obtains 

f12 ~_ kB1.5 [ ~ -  ] _~ 0.25 . (132) 

Finally, from (131) and assuming that the maximum exchanged energy is of 
the order of the Rabi splitting ~2n, an upper limit for the temperature is 
provided by the relation flokBT/J2R << 1, which corresponds to a maximum 
temperature of the order of 60 K in GaAs quantum well excitons and for 
JOR = 5 meV. 

We compare the results of (130) with luminescence measurements per- 
formed by Stanley [Stanley]. The measured and calculated spectra for dif- 
ferent temperatures are plotted in Fig. 25. The calculation has been made 
using the nominal parameters of the sample, except for the inhomogeneous 
broadening parameter ")'inh and the two energies hwc and hWo. In particular, 
the measured value of the temperature was used. Since the overall inten- 
sity of the luminescence is not predicted by (130), the proportionality factor 
appearing in that expression has been adjusted for each spectrum in order 
to match the experimental data. The different spectra were taken from the 
same position of the sample, which implies that the cavity mode frequency 
is unchanged. We see that the agreement between Eq. (130) and the exper- 
imental data is very satisfactory, especially for low temperature. The larger 
discrepancy occurs on the high energy tail of the higher polariton peak. This 
is explained if we consider that the luminescence from the lower tail of the 
electron-hole continuum also contributes to the spectrum. This contribution 
is not considered in the model. The value of the parameter "Yi,h obtained by 
the fit is 7inh = 4 meV, which corresponds to a full width at half maximum of 
the bare exciton resonance equal to 8.5 meV. This value compares well with 
the same quantity obtained from the emission spectrum along the quantum 
well plane. 

The most striking feature of the data in Fig. 25 is the thermal shape of 
the luminescence spectra. In fact it has been checked that each luminescence 
spectrum matches the corresponding absorption spectrum (which, in turn 
is proportional to the density of states) weighted by a Boltzmann factor. 
This fact, however, is in contrast with what expected in microcavities, where 
the radiative rates are extremely fast and should not leave enough time for 
the system to reach a thermal population in the radiative region. Deviations 
from the thermal distribution have already been predicted as a result of the 
competition between relaxation and radiative processes for quantum well ex- 
citons [Piermarocchi (1996)]. Furthermore, phenomena such as the bottleneck 
effects have been known since long in the case of bulk polariton photolumines- 
cence [Sumi (1976), Weisbuch (1977), Weisbuch (1979)]. Within the present 
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Fig. 25. Comparison between the measured (circles) and calculated (full lines) lu- 
minescence spectra for different temperatures. The spectra are vertically shifted 
with respect to each other for clarity. 

model, the photoluminescence lineshape is naturally explained. The thermal 
factor in the spectra originates from the function fi(w) appearing in (130), 
while the functions ~(w) and ~(w) provide the polariton density of states. 
The factors depending on fi(w) reflect the thermal population of the phonon 
bath. The scattering coefficients are thus weighted by these factors and, as a 
consequence of the stationary regime, the same terms occur in the expression 
for the emitted spectrum. However, because of the very fast radiative rates of 
the polaritons in the radiative region, there is no time for population buildup 
and these levels are practically empty. Thus, it is not correct to speak of 
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thermalized polariton population because the thermal distribution enters the 
polariton dynamics through the phonon population only. 
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Fig. 26. The fitted values of the uncoupled energy and cavity modes are reported. 
The curves represent the constant cavity energy and the variation of the exciton 
energy predicted by the bandgap renormalization law. 

A confirmation of these results is obtained by plotting the fitted values of 
the exciton and cavity mode energy as a function of the temperature.  This is 
made in Fig. 26. The cavity mode energy should be temperature-independent,  
while the exciton energy is expected to vary according to the empirical law 
for the bandgap renormalization [Hellwege (1982)], which reads 

T 2 
Eg(T) = Eg,0 - 5.8 x 10-4 T + 30--------6 ' (133) 

with the temperature  T expressed in Kelvin. This curve is plotted in Fig. 26 
and matches well the fitted values. 

In addition to the upper limit on the temperature,  this model has another 
limita6on. The shape of each spectrum is well reproduced, but  the relative 
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intensity of two spectra under different quantum well and cavity parameters 
(in particular the exciton-cavity detuning) can not be predicted. The reason 
of this restriction comes both from the approximations (119) and (120), and 
from the assumption of a single in-plane wave vector for the radiative levels. 
The free evolution of the phonon and bottleneck level operators implies, as 
was already remarked, that the scattering processes from the radiative to the 
non radiative levels are not included in the calculated dynamics. This pro- 
cesses are negligible at low temperatures but, being temperature dependent, 
they influence the temperature dependence of the absolute emitted intensity. 
The second approximation is a little more restrictive. The strongly radiative 
polariton resonances are not only those at kll = 0. A whole cone in the range 
of about k0/10 consists of polariton levels with enhanced spontaneous emis- 
sion with respect to the bare exciton. When the exciton-cavity detuning is 
varied, the relative importance of these radiative channels changes and this 
change is reflected in the balance of the polariton populations under a sta- 
tionary excitation regime. This implies that the dependence of the overall 
luminescence intensity on the detuning is not reproduced either. The inte- 
grated luminescence intensity as a function of the detuning is an important 
feature which allows the characterization of the polariton interaction in mi- 
crocavities [Stanley (1996)]. The restriction discussed above is thus a major 
limitation for our model of polariton luminescence. Nevertheless, the assump- 
tions of the present model are very simple and they allow to obtain a compact 
analytical expression for the luminescence spectrum. Furthermore, the com- 
parison between the calculated and the measured data shows that the shape 
of each spectrum is very well reproduced, and the thermalization of the spec- 
trum, which was apparently unexpected, can be explained on a very simple 
basis. 

6 O u t l o o k  

The optical response of semiconductor microcavities is characterized by a 
wide phenomenology. In fact, in addition to the variety of linear and non- 
linear features related to the pure excitonic response, the strong coupling 
regime and the peculiar polariton dispersion are responsible of a number of 
new interesting fetures. Among these, we have described the bottleneck ef- 
fect and the persistence of the thermal shape in photoluminescence spectra of 
highly inhomogeneous polaritons at low temperatures (Section 5.3). We have 
also mentioned in Section 4.5 the problem of polariton linewidths, pointing 
out that, at least in the two cases of phonon and excitation broadening, the 
broadening mechanism might be strongly influenced by the polariton dis- 
persion and the lower polariton linewidth consequently suppressed. Other 
very recent results include, as an example, the first observation of the Pur- 
cell effect [Purcell (1946)] in microcavity embedded semiconductor quantum 
boxes [G~rard (1998)]. Among the first experimental findings in the nonlinear 
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regime, which reveal unexpected new behaviours and should stimulate fur- 
ther investigation, we underline the first evidence of the suppression of the 
lower polariton excitation induced linewidth [Baumberg (1998)] and the first 
experimental observation of the resonant optical Stark effect IQuochi (1998)] 
which has been made possible by the pulse shaping induced by the Fabry- 
P6rot filter. Apart from the fundamental aspects of the physics of microcav- 
ities, we should recall how the technology of optical devices has progressed 
in the last ten years with the development of vertical cavity lasers (VCSEL) 
[Ebeling (1993)] and light emitting diodes [Benisty (1998)]. 

In conclusion, after the early enthusiasm brought by the measurement of 
modified exciton spontaneous emission [Yokoyama (1990)] and vacuum field 
Rabi splitting [Weisbuch (1992)], the scientific investigation in the field of 
semiconductor microcavities is experiencing a second birth and will probably 
represent a mainstream domain of the physics of semiconductors in the years 
to come. In the present lecture notes we have only addressed the basic problem 
of the linear optical response of semiconductor microcavities. Our aim was, 
apart from providing the basic theoretical tools, to stimulate further reading 
and discussion, and to encourage young scientists who are willing to address 
these problems. We hope to have succeded in this purpose. 
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Introduction 

In recent years, there has been much interest in showing that spontaneous emission is 
not an immutable property of atoms, but can be modified depending on the environ- 
ment around the atoms. 

Physically, the emission of a photon from an excited atom can come about only 
through interaction between the excited atom and quantized vacuum field. Hence, 
spontaneous emission is affected by the nature of quantized vacuum field around the 
atom. The spatial propagation of quantized electromagnetic field is governed by the 
same set of equations as classical electromagnetic field, that is, the Maxwell's equa- 
tions. Just as classical electromagnetic field can be modified by optical cavities and 
various types of optical structures such as wavegnides and gratings, so can be quan- 
tized vacuum field. 

Modification of the nature of spontaneous emission can happen in two essential 
ways, namely the spatial pattern of emission and the total rate of emission. In certain 
applications, it is the modification of the pattern of emission that is useful. Whereas, 
in some other applications, one may desire the modification of the total emission rate. 

A few types of optical structure have been identified as useful for causing large 
modification in spontaneous emission. 1 They include microcavity structures, low di- 
mensional photonic structures (e.g. small planar and channel optical wavegnides, 
which are called photonic wells and wires), and optical grating structures (e.g. pho- 
tonic bandgap structures). Currently, a few types of devices have taken advantages of 
these spontaneous-emission modifying optical structures, with the purpose of im- 
proving device performances. These devices include vertical-cavity surface emission 
lasers, microdisk lasers, 2 photonic-wire lasers, 3 and lasers based on photonic-bandgap 
structures? 

The purpose of this chapter is to provide a tutorial to address the issues of how one 
can control spontaneous emission using microcavities and low-dimensional photonic 
structures, and to point out some useful applications to devices. 

In section one, we will review the theory of spontaneous emission and show how 
spontaneous emission rate can be calculated using Fermi's golden rule. This section 
also establishes various symbols and emission rate formulas for applications to later 
sections. 
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In sections two and three, we will study modification of spontaneous emission in 
metallic and dielectric planar and channel waveguides and microcavities. The modifi- 
cation of spontaneous emission becomes significant only when the waveguide dimen- 
sions are small compared to optical wavelength. Planar and channel waveguides can 
be seen as low-dimensional photonic structures that confine the motion of photons to 
a 2-D plane or a 1-D channel. The modification of spontaneous emission is due par- 
tially to the modification in the photonic density of states in these low-dimensional 
photonic structures. This is analogous to the modification of spontaneous emission in 
low-dimensional electronic structures such as semiconductor quantum wells, wires, 
and dots for which the electronic density of states are modified. In this sense, low- 
dimensional photonic structures are photonic analogues of electronic quantum wells, 
wires, and dots, and may be referred to as photonic wells, wires, and dots. Physically, 
they are in the form of strongly guiding planar waveguides (photonic wells), strongly- 
guiding channel waveguides (photonic wires), and 3-D enclosed cavities (photonic 
dots). It is interesting to point out that a 3-D enclosed cavity can be made by enclos- 
ing a strongly-guiding waveguide with two highly-reflecting end mirrors. As a result, 
its spontaneous emission modifying behavior can be related to that of a channel 
waveguide. We note that the strongly-guiding property mentioned above is important 
as, for example, a planar waveguide will not have the effect of a photonic well (i.e. 
will not modify spontaneous emission significantly), unless it confmes photons 
tightly. 

A main difference between the basic properties of electrons and photons is that 
photons are Bosons and are intrinsically more wave like while electrons are Fermions 
and are intrinsically more particle like. As a result, the wave behavior of photons is 
usually regarded as classical behavior while the wave behavior of electrons is usually 
regarded as quantum behavior. Hence, we chose not to use the word "quantum" when 
we called these low-dimensional photonic structures as photonic wells, wires, and 
dots. 

It is useful to make a few comments here on the different "pictures" that can be 
used in spontaneous emission calculations. It is true that a classical dipole in these 
low-dimensional structures will also experience the same modification in its emission 
behavior. Hence, the effect can be predicted based on classical electromagnetic field 
theory. However, a quantized emission source such as an atom will not radiate spon- 
taneously unless the electromagnetic field is also quantized. This is simply due to the 
fact that without field quantization, the eigen-energy states of the quantized source are 
also the eigen-energy states of the entire source and field system, and hence are sta- 
tionary states that do not evolve with time (i.e. no transitions) at zero classical field. It 
is interesting to note that a quantized source will have stimulated emission behavior 
under classical electromagnetic field. Quantum mechanics predicted that spontaneous 
emission rate into an electromagnetic field mode is equal to stimulated emission rate 
with one photon in that mode. Using this relation, one can "calculate" spontaneous 
emission by placing one real photon in very mode and compute the total stimulated 
emission rate. In this sense, spontaneous emission can be calculated "semi- 
classically" (i.e. with quantized source and classical E&M, but with the spontaneous- 
stimulated emission connection, which is arguably a quantum result). 
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In the quantum fluctuation picture, spontaneous emission can be viewed as "stimu- 
lated emission" caused by background vacuum fluctuations. Operationally, this is 
identical to the above "placing-one-real-photon picture". In the fully quantized treat- 
ment, the quantized vacuum field modes are modified when they propagate into a 
cavity (or a waveguide) structure and that causes modification in spontaneous emis- 
sion. As will be pointed out later, this spatal propagation of field mode operator can 
be made rather rigorous using localized-photon operators. 5 Thus, operationally, in 
terms of calculation algorithm, the last three pictures ("fully quantum picture", "vac- 
uum fluctuation picture", and "placing-one-real-photon picture") are identical. 

In section two, we show that drastic modification in spontaneous emission rates and 
patterns can be achieved with metallic photonic wires, while more moderate modifi- 
cation can be achieved with metallic photonic wells. We also consider cases of metal- 
lic planar microcavities and metallic channel-waveguide microcavities, which are 
identical in structures to metallic photonic wells and metallic photonic dots, respec- 
tively. The possibility of using metallic structures to realize very small cavities that 
allow one to capture all the spontaneous emission into a single cavity mode is dis- 
cussed. In order to model the medium geometry more realistically, we have explored 
cases for which the active medium is in the form of a thin layer such as a quantum 
well. 

In section three, we show that strong modification in spontaneous emission rates 
and patterns can be achieved with dielectric photonic wires, while more moderate 
modification can be achieved with dielectric photonic wells. The main difference 
between metallic and dielectric cases is that the metallic structures tend to achieve 
enhancement (i.e. increase) in spontaneous emission rates while the dielectric struc- 
tures tend to achieve suppression in spontaneous emission rates and cannot provide 
much enhancement. This difference can be traced to the difference in boundary con- 
ditions: the field changes sign when bounced from a metallic surface while it does not 
change sign when bounced from a dielectric interface ff the field is incident from the 
high-refractive-index medium side. We show that for the "reverse situation" of a 
leaky dielectric waveguide formed with a low-refractive-index waveguide core sur- 
rounded by a high-refractive-index medium surrounding, the behavior for a dipole in 
the waveguide is again similar to the metallic case. An application example is given at 
the end of this section to show how one can realize a dielectric photonic-wire micro- 
cavity laser with a high spontaneous emission coupling factor. 

1 Theory of Spontaneous Emission 

In this section, we review the typical approach to calculate spontaneous emission 
from an excited atom based on quantum electrodynamics. 

1.1 Atom-Field Interaction 

The problem of interest is to calculate the transition rate of an excited atom in space. 
Let us take the Hamiltonian governing the system of interest to be that of a single- 
electron atom interacting with quantized fields. The Hamiltonian operator for this sys- 
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Fig. 1.1. An excited atom can emit a photon into a quantized field mode through atom-field 
interaction. 

tem in Coulomb gauge is given as follows: 

I ~  12 e ~ 
1 +e~(F , , t )  47reo r * -F~ (1-1) / t  = 2m, 

+1~ d3~eo~2(F,t, + po/~: (L t)] ' 
^ , ,  

where ?~ is the position operator for the electron, Pe is the canonical momentum op- 

erator for the electron, ?A is the position of the nucleus treated as a classical variable, 

-e  is the charge of electron (i.e. e > 0 as defined), and m, is the mass of electron. 

Note that in this Hamiltonian, we have neglected the dynamics of the nucleus, as it is 
usually much heavier than the electron. Hence the position operator of the nucleus has 
been replaced by a fixed classical variable ?a. 

1.2 Quantized Field in Plane-Wave Modes 

In the usual quantizafion procedure for electromagnetic field, 6 one first considers a 
box of  finite spatial volume as shown in Fig, 1.2. The vector potential in the volume is 
expanded in terms of a discrete set of orthogonal modes that form a complete set of 
spatial functions. After the quantization procedure, the expansion coefficients of the 
vector potential in terms of these modes then become the creation and annihilation 
operators for photons in these modes. The volume is taken to be arbitrarily large later. 

As shown in Fig. 1.2, the volume of 
the box of interest is given by 
Ve = LxLyL ~ . The  volume VQ will 

be referred to as the volume of quan- 
tization. 

1.3 The Vector Potential 
Operator 

One convenient set of orthogonal 
modes is the travelling plane-wave 

modes {e ~''~ } with periodic bound- 

Lz 

g 

L x ~ x  

Fig. 1.2. Box of quantization for the field. 
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ary conditions (e.g. u(x) = u(x + L~) etc), in terms of which the vector potential op- 

erator can be shown to be given by: 

- - ^ t -ii..~ ~ ( r , t ) : Z Z e m a I ~ m l [ C t m a ( t ) e " t + a m a ( t ) e  ], (1-2) 
,, <, t.ro,, ) 

~m- h / -~ .  CO. : k-m C (1-3) , 

where the modes are labeled by m, which is a short-form for a set of three mode in- 

dices m = { % , m y , m , } .  Here m~,my,m, ~ {0,_+1,_+2 .... ,+oo}. The k- m vectors are 

quantized and given by: 

km ~ = 2rc m ~ , kmy = 2Z my , k,~ = 2z  m ~ 
L~ Ly L, 

The ~,~ vectors, with cr = 1 or 2, are two mutu- 

ally orthogonal polarization vectors for plane- 
wave mode m. The vectors ~,~ and ~.2 are or- 

thogonal tok-~ as shown in Fig. 1.3. 

(1-4) 

(1-5) 

1.4 The Electric Field and Magnetic Field 
Operators 

As Coulomb gauge is used, the electric field and 
magnetic field operators can be obtained from the 
vector potential operator via: 

= OA(F,t) - [h i,.F a (t)e-ff..~ ] E(F, t )= "------~------ Elemo~m =.(t)e " --h~m 
i l l  m¢7 

[^ " t "  d- .~ ^ t  . .  - d . ~  PoH(r , t )=  V × i ( F , t ) : E i ( C  ×E.~) ¢m [a,,~t )e " - a s ,  tOe " ]. 
m¢7 ( 'Or  a 

Fig. 1.3. A plane-wave mode has 
two orthogonal polarization vec- 
tors. 

(1-6) 

(1-7) 

1.5 Atom-Field Interaction Energy 

Consider the 5-~-m [P, +e-~] 2 term in the Hamiltoman and expanding it: 7 

2 ^ 

1 [ ~ + e ~ ]  =~-~m,I~2+e/3 .3  e3. /3  +e2~2] .  (1-8) 
2m, + 

^ 
e 2 A ' 2  We can ignore the ~ . .  term in the expansion in general for weak field. Further, 

using [/3,,A] = V . J  (derived from the general commutator [/3,F(x)l = - ~ )  and 
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^ , ,  ^ 

the fact that V. A = 0 in Coulomb gauge, we conclude that P. and A commute with 
^ ^ 

each other as [P,,A] = 0. This gives: 

+ ~ p, + e ~ . ~ - .  (1-9) 
2 m  2m, m 

The first term above corresponds to the kinetic energy of the electron in the absence 
of field, and the second term involves both the atomic operator and the field operator 
and would be responsible for the interaction energy between the atom and the field. 
Hence we can write: 

AFint e "-- = ~ P .  -~( r , , t ) ,  (1-10) 
me 

where HArm, is called the atom-field interaction energy. 

1.6 Free-Atom and Free-Field Hamiltonians and Their Eigenstates 

We can now write the total Hamiltonian as 

h = e o + £ r  , (1-11) 

where/Io is the free-atom plus free-field Hamiltonian: 

#~._~,o° = 1 ~ e ~ 

2m, 4vw 0 r, -F- A ' (1-12) 

= Z h , o . ( , % ~ o  +~). 
m o -  

The eigenstates of HF,..-A,om are the atomic wave functions { ] E / ) }  

I2Ivr~AtomlE,)= E, lEt) . (1-13) 

The eigenstates of HFr~-Vie~d are the photon number states 

I21F,~_Vi.ldln,,,,.)=hCOm(n,,,,. +{)]n=~), (1-14) 

where ]n~,,) is the state of n photons in plane-wave mode of k -vector k-,. and po- 

larization ~,,~. 

1.7 Electric-Dipole Approximation 

Consider the atom-field interaction energy term: 
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where 

/•AFint e " 

= - - P . . . ~  (~, t) ,  (1-15) 
m e 

~ ( ~ , t ) = ~ _ ~ I ~ "  l~m~(t)e~km'i" +h~(t)e-~i-;'). (1-16) 
,.,. \ c o . , ) _  

We can add ?a to the exponential term and subtract it away, which will allow us to 

expand the exponential term in terms of the small quantity i/~,. (~ - ~ )  as follows: 

e ~&'~" = e~"(~'-~")e '&'~ z [1 + ik- . (r ,  - ~ , )  +...]e'&'~". (1-17) 

The variable ik, .(~ -~,) is typically much smaller than unity based on the facts 

that at optical frequencies we have 2m ~ 0.5 Ixm = 5000A and ~ - ~  ~ Bohr radius 

2 ,~  0.5/~, giving /T,~ .(r, - F , ) ~  am • -~A << 1. To the lowest order we may approxi- 

mate e ~-~ (~'-~") ~ 1, so that e ~" 4, = e ~..~.. This is called the Electric Dipole Approxi- 
mation. 7 The inclusion of higher order terms will give rise to other multipole interac- 
tions (electric and magnetic quadrupoles etc). We shall denote this approximated 

Hamiltonian a s  /r~EDin t ' 

/t~ AFint e -~ - - P .  "-~ (FA,t) --/tEDm, • (1-18) 
me 

^ 

1 . 8  T h e  E .  ~ F o r m  for Electric D i p o l e  E n e r g y  

Near atomic resonance, this electric-dipole atom-field interaction energy in the form 
^ ^ 

of ~ .  P, can be approximated in a E .  F, form. Near resonance, r e and A will be of 

the form given by ~-, =(~e -'~'"' + F e  '°'"') and A z~-e ... .  ' + where coa is 

the atomic resonance frequency. Using Heisenberg equation of motion, it can be 

^ a;, ~ :  ~ ./~ interaction, shown that ~ + eA" = m, ~-. If we neglect the term in the we 

have: 

/ 3 . A = m  ~ . ~ ~  • ±-,~,, - -  ~ m, (-tco,Te + icoa~te'~"') .~, ^ (1-19) 
Ot 

^ 

"-- ^ ~A _" " i --" -,or ^ ^ E .F . . . .  r e = - t -  comae - +icomffte j~'m').~,. (1-20) 
Ot 

Hence with co, ~ co,. (near atomic resonance), we have: ~ ~ .  ~ .~e:g-.Ag ~ = e~. ~, 
where we have made the rotating-wave approximation and neglected terms rotating at 
26o a (valid at near-resonance). This then gives: 
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Igl EDm, ~ e~(F,,t) . ~. 
^ 

This form of interaction Hamiltonian is called the E.  ~ form. 7 

(1-21) 

1.9 Second Quantization 

Let {]E~)} be the complete set of atomic eigenkets for /g/F~-~-A,~, SO that we have 

HF~_,tom I Et) = E~IE ~). AS {lEt)} is a complete set of states, we have 

~IE,>(E,I = i .  (1-22) 
l 

where 1 is the unity operator for atomic operators such that iO = 0 = Oi ,  with 
being any atomic operator. Using this completeness relation allows us to write atomic 
operators based on these atomic eigenstates, which is a process called "second quanti- 
zation'. We can then write: 

~o = i~oi= EIE,><E, ~oYIE,><E, I 
* I (1-23) 

-- ZIE~ ><E~ I/LI E, ><E, I = Z E~IE~ ><E~ I, 
k , l  k 

where we have used HolE,)= E, IE,), and <E, IE,)=6,,.  Similarly 

er, = Z I E ,  )(E, le~.lE,)(E,l= Z ~.,I E. )(E, I, (1-24) 
,,t k.t 

where ~,, = (E, le~lE, > is the matrix element for the dipole operator e~. 

1.10 Two-Level System 

Let us assume that there are two dominant atomic energy levels of interest. Let the 

upper level with energy E~ be I E~) and the ground level with energy E~ be Eg).  In 

this case, the second quantized operator for the total Hamiltonian will be reduced to: 

I~I =hCOAN u +(VS-~ +lf~*).~(FA,t)+ ~_hco.(h~hm, , +~-), (1-25) 
m o  

where hcoA=(Eu-Eg ) . lV,=IEu)(E~I is the upper level population operator, 

I? = E,)(E~I is the atomic down-transition operator, f'~ = ]E,)(E,] is the atomic up- 

transition operator, and ~t = Hu, = (E~]e~ E,) is the dipole matrix element. We have 

used ~ = ~ =0  as (E~I~.IEo>=(E , ~ E,)=0, and used ~ + ~ ,  = i. 

1.11 Transition Rate Calculation via Fermi's Golden Rule 

Let / I  =/ lo +[tint(t) be the Hamiltonian of the system in the Schr&linger picture, 
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where Ho is the unpermrt~  system Hamiltonian with a known solution and Hm, (t) 

is time-dependant interaction energy. Suppose Hint(t) has the form of a sinusoidal 

excitation: 

Hm,(t) M e -i~ ^t '~ "~-- - ' - r o t  "~- Mmte , (1-26) 

then one can compute the transition rate between an initial state I1) and a final state 

iF)  using perturbation theory. 6'8 The transition-rote result is called Fermi's golden 

rule. In the derivation of Fermi's golden rule, we start with the SchrOdinger equation 

~h° l , ' ( t ) )  = (/70 + D..) l~,(t)) .  (1-27) 

and let IW(t)) = C(t)e-'~'lS ) + D(t)e-'~-'lF ), from which we obtain: 

- D(O 
where f~ = (E~ - E  r ) l h ,  and we have used the rotating wave approximation. The 

transition rate is then given by ~, = ~- I D(t) 12 . For times shorter than the decay time 

t < (1 / y) ,  C(t)  can be taken as 1. The direct integration of D(t) gives the atomic 

decay rate at time t: 

~ 2 F ^ t t l  ~ (f2-co) 7 ~-~- ( ~¢= I )t s i n ( ~ -  co)t (1-29) 

In the case where there are many final states with the same value for the matrix 

element (Fi~S~tll), we have: 

2 - ~ sin(f l -  co)t r =}'~-(F~,.<Is): R~(E,)dE,, (1-30) 
(~_co) 

where Pe ( E r )  is the number of states per unit energy. At long time t, the integrand 

can be approximated by a delta function, 
sin(fl - co)t 

~rS(f) - co) = n h S ( h ~ -  hco) . (1-31) 
(~'/- co) 

This approximation is justified only if other E r -dependent functions in the integrand 

(FI~A, Is ) ~p~fE,) 
Atop 

j )t, - \  . 

Fig. 1.4. Relative widths of the decay rate and Eg -dependent function. 
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sin(~ - co)t sin(f2 - co)t 
are slowly varying in £) within the width of . The width of 

(~ - c o )  ( ~  - c o )  

is given by ,~f2 = ~Ee/h ~ x/t. The other terms in the integrand, pe(Ee) and 
^1" 2 

(F~/mt[ l )  , are generally functions of E e . Let the characteristic width of 

I /  I~".  I " t l ^ , ~  2 p,(Ee)l~F~,,11/I be ~ =naco~. The validity of the approximation then re- 

quires A ~ <  Acop or t > (x /~cop) .  Combining with the requirement that (1/7") > t ,  

we have ( l /y )  > t > Qr/hcop) or Acop/~r > 7" as shown in Fig. 1.4. 

Thus the validity of the application of Fermi's golden rule requires that 

Aco____£_p > Y. (1-32) 

A more rigorous treatment in quantum optics shows that the decay rate formula is 
valid under Markov approximation, or when there is no long-time memory for the 
atom emitting the field, which would be the case if the atom is coupled to many field 
modes. 9 

1.12 Summary of Decay Rate Formulas 

In summary, the specific case discussed above assumes that we have transitions be- 

tween one initial state I1) and one group of final states with ener- 

gies around the value Ee ,  and that these states have similar values for their matrix 

elements so that (Fl~-t~,ll)~(Fk~(-I~tll)-(F~4~t[I), where ( F ~ , [ I )  repre- 

sents the matrix element for this group. For this case we have 

= I - - 0/~ e 

where oW is the number of states within the energy width bE e so that 

6N 
- number of states per unit energy - p~(E e) . (1-34) 

bEe 

In a more general case, we can have transitions between one initial state [I) and 

many groups of final states with different matrix elements. Let us label the represen- 

2" = ~- ' f i / j ,  (1-35) 
J 

~I~,11)} 6 ( E , - E ~ j ) - h c o ) ~ d E ~  j' , (1-36) 

where 6~,j is the (incremental) contribution to 7 from group j and 6N(J)/bE(i) = 

p~J) t~,cJ)~ is the density of states for group j at energy E(i ~ In the situation where e ~'t: 'e ! 
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the group j can be parameterized by a continuous parameter, we can replace Zj by 

an integral giving 

= f d r .  (1-37) Y 
d - -  

1.13 Spontaneous Emission Rate Calculation 

To calculate the spontaneous emission rate of an excited two-level atom we start with 
the two-level atom Hamiltonian: 

= H0 +/ t~,  (t), 
+ ^ t  ^ l 

m ~  

: 

Let us consider one initial state 11)= 10)leo) where there is no photon and the atom 

is in the upper level, and many final states IF) = II,,~ ) E~) where 1 photon is emitted 

into one of the plane-wave modes and the atom makes a transition to the ground level. 

Specifically, let us consider one group of final photon states with k- -vectors around a 

particular value ~ and within a solid angle dE2. This group of states spans a range 

of photon energy hco,, and Fermi's golden rule has to be rewritten to integrate over 

hco. The (incremental) contribution to the emission rate due to this group of photon 
final states and the associated atomic states is then given by 

d y ( ~ )  : I 2-h ~/lri126(Et - Er -hco)pph (hco, f))df2dhco , (1-39) 

where pph(hco, fa)d~ = bTVph/6hco is the number of photon states per unit photon 

energy hco within the solid angle &'). Let Ez - Ee = hcoA, where coa is the atomic 

resonance frequency. After performing the integration, we get 

ay(/~.,)- 2---~-~la/t 12pph(hcoA,~)d~. 
- -  h i.~ FII 

The matrix element M n =(F~ /~ , [ I )  is also evaluated 

(F~/~ t l I )  can be calculated from: 

(FIhE ,,I1)=(1,.oI(E, II E .IE.)IO) 
^ - -  • - i k ~ ' P A  ~ t  i m m t  

` V~*-e,~(-t¢,,)e a,,,,(O)e IEo)lo) 

= (-i~,.)-fi*.~m.ei*"e -~''~ - Mrl d°'~'. 

(1-40) 

at co = coa, where 

(1-41) 

Thus IM ,I 2 _ , _  2 2 =1¢,,1 l/'t "e,.~l with ~" :(Eglefi, lE,,)= ,u'~ if the upper-level is 2P~ 

state of the hydrogen (i.e. we have z-oriented dipole). The emission rate into a par- 
ticular polarization mode is then given by 
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2x 2 2 _ 2 dr,Ak,,,) = y[~..[ I/t,I I F, "e..~l P'h(hcoA ' n ) d a  (1-42) 

1.14 Spontaneous Emission Rate in Free Space 

Let us apply the formula above to calculate the 
emission rate in free space. First we need to find 
pph(hcoA,F2). Consider a group of photon states 

with k-vectors around k-,.. Let O, ~b be the di- 

rection of ~ .  Let us consider all modes with /T - 

vectors lying around k,, within a small /~-space 

volume d3/~ defined by a small solid angle 

around O, ~ in k-space as shown. 

Since 

km~ - 2~rm~ kmy = 2ffmy k,,~ = 2rcm-----z-~ 
L~ L, L, 

the incremental/T -space volume d 3 k  " is given by: 

d3fc=dk=dk~dk,~ = (2rc)3 dm &ny&n,. 
L~LyL~ 

k k ~ ?  d3~ - 

0 

Fig. 1.5. The volume element 
d3k - in/~ space. 

(1-43) 

(1-44) 

But 6mx6my6m , = OWph is the total number of photon states in that volume, hence 

d3~ " - (2:r)30Wph (I-45) 
vQ ' 

where V e =LxLyL ~ is the volume of quantization. Now d3k=k2dD-dk= 

k: sinOd6~/~k with k =I fc I= co/c. Hence, the density of states for these free-space 

photon modes is: 

6Nh - V~ d3k - _ VQ l k  2 dksinOdOd~ " (1-46) 
PPh(hco'f2)df)= 6hco (2:03 6hco (2~r) 3 h d o  

We see that in this case pph(hco, f2) is actually independent of the solid angle f2. 

This gives for the polarization cr : 

dy,,(~,,)=dy~,(O, fk) = 2~riu, 12 hco ]Fm~ .F~ 12 VQ l k 2  dksinOdOdO (1-47) 
h 260V Q (2x) 3 h dco 

where co is to be evaluated at coA = (Eu -Es  ) /h .  To find the dipole polarization 

factor ]F,,~-Fzl, we define the two orthogonal polarization vectors for each k .  

mode, F,, t and F,, 2 such that F~, is in the direction of 0 and F,2 is in the direction 

of ~ as shown in Fig. 1.6. 
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Clearly e,.~ • e~ = sin 0 and ~,~ .~ =0. The dipole spontaneous emission pattern as a 

function of angle is then given by: 

coA s i n 3 O d q k d O , a n d  dy.=:(0,~b) =0 .  (1-48) 
dy.=l(0,qt ) - 2(2x)Ehzoc3 

Thus the emission into the ~ polarized ~,,: is zero. 

The total emission rate is: 

r = ~.~ dr~ (o,~). (1--49) 
o" 

After integrating over 0 and 4 ,  we can show 

that the spontaneous emission rate in free space is: 6 

I/~,1 ~ COA (1-50) 
Yvs 3nfi6oc 3 , 

where we have used ~sin 3 0 dO = ~ and co = kc  . 
o 

I e.2 

ky 

Fig. 1.6 The two orthogonal 
polarization vectors. 

1.15 Density of States per Unit Volume, Unit Area, and Unit Length 

From above, we have 

2n" 2 2_ _ 2 dr~(~.) : Tleml ]/~,l ]e,.em~] pph(hc%,~)d~ (1-51) 

Let us divide the density of states by the volume of quantization and define the den- 
sity of states per unit volume as Pph/e (hcoa) =- Pph (hcoa) / l le  • In  terms of which 

2~r z 2_ _ 2 dr~(k.)= yleml I.,I le,'e-~[ VQpp,,v(hco~,n)d~z (1-52) 

This allows us to express the emission rate in terms of quantifies that are independent 

of the volume of quantization. For example, 1¢.12vQ = hco,/2~o is independent of 

VQ and has a value determined by the quantized photon energy hcom. Likewise Pph/Z 

is also independent of VQ. Thus, the physically meaningful quantifies that affect the 

spontaneous emission rate in 3-D space are the magnitude of the quantized photon 
energy and the density of states per unit volume. As will be seen later, it is also of 
interest to describe spontaneous emission rate into a 2-D or 1-D waveguide mode. For 
these low-dimensional photonic structures, the physical variables of interest will be 
the density of states per unit area and the density of states per unit length. As will be 
seen in the next two sections, the density of states factor takes care of those mode 
parameters with continuous degrees of freedom. The discrete guided mode parameters 
are dealt with individually. 

1.16 Quantized Mode Amplitudes for General Modes 

For modes that are not plane waves, we can write in general 
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/~mo" ( r ,  t) = [iZmFra~r (r')~mo" (t) + H. c.], 

~(F, t) = ~ Era, (r', t), (1-53) 
m~ 

where H.c. denotes Hermitian conjugation, fiat(F) is the mode spatial function, and 

z m is a normalization constant whose value is to be determined by field quantization. 

The value for iz.i = can be determined by imposing the total vacuum field energy (ex- 

pectation value of the total field energy in vacuum) for each mode to be {hco,~ : 

2 

% 

_ -  

(1-54) 

where we have taken the electric and magnetic field energies to be equal, and ¢(~) is 

I~m 2 ¢ I \ I I ~(~')~ that constant at ~-. Now (0 a,,F,O)IOI=IZml2.m SO ~ h ( / )  m the dielectric 

3-- - -  2 --  _ 2 
d r6(r)lzm[ Fm ( r )  , g i v ing  

v~ 

= ] i ~ ,  
Iz . I  " (1-55) 

% 

1.17 The Mode Volume Factor 

For the general case, [~ml 2 m the decay rate formula will be replaced by Zmffm,,(~) ~ • 

Fmer( ~ - ) -  2 = [ 2 that for plane-wave modes e ~-'~ = 1 .) It is useful to cast [z,,I ~ in (Note 

terms of the effective mode volume, which can be defined as follows. In general 
I F (~) I has a peak value at ~~.~. We can write 

~d3Fs(F) [ if= (F)12= e(Fp~k)[ ffm (F~,)12 Vm~., (1-56) 
v~ 

where Vm~ is called the effective mode volume. In terms of V ~  we have from Eqs. 

(1-55) and (1-56): 

hco. I F . (~ )  I ~ = i~,,t~. 
I zm 121F.(~)I ~- 2Z(~)V~o~ I f . ( ~ )  (1-57) 

This is a direct analogue of the flee-field case for which we have 
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Iffm 12= ha',. . (1-58) 
26oVQ 

1.18 Emission Rate for the General Case 

In the general case Vm~ plays the role of V e . The emission rate for the general case 

can be written as: 

2z 
dym,~ = --~- I ~m 151 p, 151 ~, • ~,,, (F~,,)I s Pph(fia'a,f2) d ~  , (1-59) 

where ~po~. is the location of the z -dipole, the polarization vector ~m,(F~p~Le) is the 

unit vector of F= (~) at r = r~pot+, and [ ~. [~ is given by 

I~m I~=Iz,. ~ - - 2 h(Om IF"(~'~)I ~ I I F.(r~poi,) I = 

-- - 2 (1-60) 
_ ha' .  I F~ (%o,e) I 

2 ~ a ~ ( ~ ) l  F . (~ )I  ~ 
% 

Thus the emission rate is related to the vacuum field intensity of the mode at the lo- 
cation of the dipole. In a typical calculation, once we know the mode function F~ ( f ) ,  

we can compute the mode volume factor by computing ~ d3F6(F) I F,,(F)I ~ and then 
% 

obtain I~. I ~ . 

2 S p o n t a n e o u s  Emiss ion  in Metal l ic  Wavegu ides  (Metal l ic  
Photon ic  Wells ,  Wires ,  and Dots)  and Microcavi t ies  

2.1 Introduction 

Both the rate and pattern of spontaneous 
emission can be modified in metallic 
waveguides and microcavities. In this sec- 
tion, we will consider the modification of 
spontaneous emission in different types of 
metallic waveguide and microcavity. 1"~° 
We will first study the modification of 
spontaneous emission in planar metallic 

/ 
/ /  
I V 

(a) (b) 

Fig. 2.1. Two types of metallic wave- 
guides: (a) planar, (b) rectangular. 

waveguides (metallic photonic wells as shown in Fig. 2. la). It will include both the 
ideal lossless waveguides and lossy waveguides. We will then study the case of chan- 
nel metallic waveguides with a rectangular cross section (metallic photonic wires as 
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shown in Fig. 2. lb). The active medium is typically assumed to be in the form of a 
thin layer such as a quantum well situated at the center of the structure. 

The results for microcavities can be obtained from waveguide results. For example, 
A "planar-mirror microcavity" (see Fig. 2.2a) can be formed with two partially- 
transmitting metal plates spaced by a distance from each other, which of course is the 
same configuration as a lossy planar waveguide. A "channel-waveguide microcavity" 
can be formed by enclosing the two ends of a short rectangular waveguide with two 
partially-transmitting parallel metal plates (see Fig. 2.2b), or by forming a ring cavity 
with waveguide. We may refer to such type of microcavity as photonic-wire micro- 
cavity. A metallic-disk microcavity (see Fig. 2.2c) for which the cavity modes are the 
whispering gallery guided modes can be regarded as a "planar-waveguide microcav- 
ity" when the disk diameter is large (a large disk diameter gives a wide mode size and 
would behave like a planar waveguide). We may refer to such type of microcavity as 
photonic-well microcavity. We note that a "channel-waveguide microcavity" is also a 
photonic dot (3-D enclosed cavity). 

__t___ 
~ii~iiiiiiiiiiiiiiiiiiiii!i!~ 

(a) Co) (c) 

Fig. 2.2. Different types of microcavities: (a) Planar, (b) Photonic-Wire, (c) Photonic Well. 

In terms of applications to microcavity lasers, one quantity of interest is the fraction 
of spontaneous emission that can be channeled into a single cavity mode, which is 
often referred to as the spontaneous-emission coupling factor or the fl value. A large 

spontaneous-emission coupling factor can lead to lower lasing threshold for lasers and 
is also desirable in terms of realizing high-efficiency light-emitting devices (LEDs 
etc). With a unity fl value, every photon emitted spontaneously will be captured into 

a single cavity mode. Such will be the ideal microcavity. Another quantity of interest 
is the modification in the total decay rate, which can be used to change the transpar- 
ency pumping rate of the laser medium. To lower the transparency pumping rate, it 
would be desirable to have a slower decay rate (i.e. to have inhibited spontaneous 
emission). 

The results in this section show that a large fl value approaching the ideal limit of 

unity can in principle be achieved with a metallic charmel-waveguide microcavity 
(made of ideal metal). In addition, it is also possible to achieve a large modification in 
the spontaneous decay rate, which can be either inhibition or enhancement. In the case 
of real metal, the inhibited spontaneous emission effect may become less effective. 

A metallic photonic well (or a photonic-well microcavity) does not have as strong 
an effect as a metallic photonic wire (or a photonic-wire microcavity). Nevertheless, it 
may still be utilized in some situations of interest. 
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2.2 Emission Rate in Lossless Metallic Photonic Well 

Let us consider the case of a perfectly conduct- 
ing planar waveguide (metallic photonic well) 
formed by two infinite metallic plates in air. The 
plates are separated by a distance w,  which 
defines the waveguide width. We use a coordi- 
nate system as shown in Fig. 2.3, and label the 
three different spatial regions as region 1, 2, and 
3, respectively. Region 2 is the guiding region. 

There are many discrete planar waveguide 
modes, corresponding to a discrete set of k,~. 

The allowed values of k,~ are determined by 

v 

3 

Fig. 2.3. The coordinate system we 
use for metallic planar waveguide. 

the waveguide structure, k= = m / r / w .  Here m~ is an integer ranging from 1, 2, ... 

up to a maximum integer value not over 2w/2 .  These modes have finite extend in the 

z direction. In the x-y plane, we can impose a box of quantization with an area L, Ly. 

The photon density of states Pph (hco) Can be derived by using: 

where 

and 0 

in the 

k ~ = 2am,, k ,,y 2amy 
L~ ' Ly 

&,~&,~ - (2:r)2 &G&ny = (2x)2 ~v'ph (2-1) 

LxLy L~Ly ' 

6k,,r &,,,y = k ,,~dk,,=yd(k 

k.=y is the projection of the /7 -vector in the x-y plane given by k,~ = k sin O, 

is the angle between/7,, and the z axis, and 6Nph is the number of states with- 

/~ -space area of &-~&,v • This gives: 

6N~h 1 L x Ly dk ,,~,y 
P°h(hC°'o)d¢ = ~Yaco - h (2;¢) 2 k,,~ ---~w d#.  (2-2) 

The incremental contribution to the decay rate for a z-dipole due to guided mode 
m z is then: 

2'~2;,r 2 2_ _ 2 ~dk~ d ~  ~ ' ~  = !--~[~,,I [/'ql e,,•(zoar,,,o ) 'e,  L~L, (2-3) 

For x-dipole or y-dipole, we replace the polarization factor by g,.~(z~po~e)'e-x and 

e,~ (Z~po~e)" ey respectively. The total decay rate is given by 

r = ~ Y ~ .  (2-4) 
rn~ 

To calculate 7 ~ ,  we need l~ml z which can be obtained by first computing: 
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ao 

d Fa(F)F,,(~-) = eoLxLy dzF , , ( z  , (2-5) 
- ~  - a o  

giving: 

h - 2 

i s . i  = _ ( 2 4 )  
2aoLxLyLm~ , F,,,(zp,~,) 

where L m ~  e is the effective width given by: 

- -  2 ~dzF.(z) 
Lmod e - -  - 4  (2-7) 

F ( ~ ) 5  • 

The expression for F=(z) in region 2 is 

fEo~ ~ (TEM mode) 
/ 

F,, = ~sin(k,=z)~,~ x b-, (TE modes) (2-8) 
/ 

[k,,~ cos(k,=z)~, - ik,,= sin(k,=z)~,~ (TM modes) 

where ~-~ is a unit vector in the direction of k-,~. 

Let y vs be the decay rate for the dipole in free-space, where y vs = kA ;'rao h , 

co a = kac .  We shall present the results by normalizing it to the free-space rate and 

define the normalized rate as Rw, = y ~ , / y  vs • 

For a vertical dipole (z-dipole), we get with 2 = 2~r/k • 

3 
TEM mode 

4(w / 2) 

R w~ = 0 TE mode (mz = 1,2,3,...) (2-9) 
g r a  z 

32c~(k2 -k~)cos2k , ,=z  TM mode (m~ = 1,2,3,...) 
8x 2 (w / 2) 

For a horizontal dipole (x, y-dipole), we get: 

h o r  3 R ~  = ~ s i n  2 k,,=z (2-10) 

325 (k s - k ~  ) sin2 k,,=z 
16¢r2(w/2) 

We see that the emission rate is inversely proportional to the normalized width of the 
waveguide ( w / 2 ) .  

TEM mode 

TE mode (m~ = 1,2, 3,...) 

TM mode (m z = 1,2,3,...) 
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Fig. 2.4. Normalized spontaneous emission rate vs. w/t  for lossless planar waveguide with 
dipole at the center. 

2.3 Results for Lossless Metallic Photonic Well 

The results of calculation are shown in Fig. 2.4. Note that 
1. At w = 41  = 0.5t cavity size, the horizontal dipole emission rate is 3 times 

higher than in free space. 
2. The horizontal dipole emission is completely cut o f f  at w < ~ 2 .  

3. The vertical dipole emission is close to the free space rate at w > 4 1 .  It grows 

rapidly to 5 times free space rate at w = 0.22 and to infinity at w ~ 0. This is due to 
strong emission into the TEM mode, which is never cutoff and has a high vacuum 
field intensity when the plate separation approaches zero. 
4. The total emission rates of all the vertical and horizontal dipoles approach the 
free space value of 1 when w >> 51. 

2.4 Emission Rate in Lossy Metallic Photonic Well and Planar Microcavity 

Suppose the metallic walls of the planar waveguide are lossless but are so thin that 
they are partially transmitting. Then the metallic waveguide will be a lossy wave- 
guide. As all the fields in such a lossy 
metallic planar waveguide will 
eventually leak to regions 1 and 3, we 
can make a reverse process and 
propagate vacuum modes in regions 
1 and 3 from infinity into the 
waveguide and excite the waveguide 
modes. This provides us with a way 
to obtain the vacuum field amplitude 
in lossy metallic planar waveguide. 
As mentioned in the introduction to 
Section 1, in the fully quantized treat- 
ment, this approach would involve 

Vacuum modes 

Fig. 2.5. Propagation of vacuum modes into a 
lossy metallic planar waveguide. 
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the spatial propagation of field mode operators, which can be made rigorous by using 
the localized photon operators: 

The density of states and intensity of the modem field are those for the vacuum 
field in free-space, namely: 

hco 
¢~2  - 2coVe (2-11) 

and 

d k  
- sinOdOd o - p,  sinOdOd¢~ (2-12) PPh(hg-°'~'~)d£'~ = (2a') 3 h do) 

The incremental contribution to 7 is then given by 

2 x  2 _  _ 2 : 
(ZdiP ole) ( 2 - 1 3 )  d r . ( n )  = VI .I sin0d0dO, 

where ~,, is the mode's vacuum amplitude at the location of the dipole in the wave- 

guide. However, as every mode ~,, actually comes from a quantized mode ~ in the 

free-space regions 1 and 3, we can obtain ~:m by propagating ~ into the structure. 

Let r and t be the reflection and transmission coefficients for the field amplitude, and 

let us define G m as the ratio G m = ~ m / ~ m  . The total decay rate is then given by: 

2z re/2 ~ 2 

• b-~p~,, I~ P, sin0.  (2-14) rR=2f.d:f, dO ¢ m Io°12 oo 2 
0 0 

We note that for vertical dipole pointing along z: 

.~m.e__p42={on20 TM m o d e T E  mode (2-15) 

For horizontal dipole pointing along x: 

2 = Icos~ 0sin 2 ~ TM mode 

gm~ "e~polo [sin 2 ~b TE mode 
(2-16) 

For a vertical dipole the decay rate is 

~ J ~ + l_@[cos ~ kuz+cos ~ ku(w -z ) ]  
R ~  = 1 2r 2 

(1-ua)du, (2-17) 
o +(l_~x) sin: kuw 

where the integration variable u = cos0.  Note that ku = k cos0 = k,. For a horizontal 

dipole, from the TE-polarized field we get 
1 l - r -4-  2r [¢i1.12 3_f iT;r -- l_~rLo~" kuz + sin 2 ku(w -z ) ]  

du (2-18) 4 J  
o 1 + ( 2r )2 sin2 kuw 

and from the TM-polarized field we get 
1 1-r : r  

I l_r2 t ~ =  3 ~ +  [sin2kuz+sin2ku(w Z)]u2du. (2-19) 

1 + [ 2r ]2 sin~ kuw 0 ~ l_r2 ] 
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Compared with the lossless case, we are now integrating over a continuous range of 
k, instead of summing over discrete values of k,=. 

For r close to 1, the integrands are sharply peaked at the original values of k s ~ k,= 

due to large variation in their denominators at such values of k s , and we can ap- 

proximate the common denominator by: 

1 ] 1 
I 

1 + ( # ) 2  sin = kuwt - 1+ w2( >_~_)2(k=- k"=) 2 (2-20) 
lu_k~ z 

i.e. it can be approximated by a Lorentzian lineshape. In fact, if  we take the limit 
r ---> 1, we will be able to recover the results for the lossless waveguide. In the neigh- 
borhood of a peak, using the above expansion, we get 

A+um 2 r  -~o 2r 

~. '-'~ du----> !~ol + '°- '2) d k s =  lr (2-21) 
1.~_ [ 2r ~2 ( [ _ ~ ) 2 (  )2 k~  ) ' -a+,. ~l_~r/ sin = kuw - w = k s -k, ,~ 

where u m = k, ,=/k.  In the numerators of the integrands, we can replace the variable u 

by the constant value u,, = k = / k ,  because they do not change appreciably in the peak 

regions when r -+ 1. Hence, for the vertical dipole the expression is reduced to 
] 2*" 2 

--TMR~t ~--~I >~r[c°s k u z + c ° s = k u ( w - z ) l ( 1 - u 2 )  du 

1 + ( 2, h= sin = kuw 0 ~ l_r2 ] 

1 2r 

~,~m3! ,-r2 du[cos2k.m~t_Cos2kUm(W__Z)](l__Id2 ) 
1+1 =" ~2 ..... 2, .= ~_~-] t~w) (U--Urn) 

d [COS ~ k,,~z+cos 2 k= (w-z ) ]  1 -  = X7_3 f l-, 2 

2 2 w= (k s _ )  < ) 2  

2kw 
3 2 =  

m~ gm~ 

(2-22) 

which is the same as the TM mode contributions. 

Note that the stun is over m = 0,1, 2 . . . . .  For the m = 0 case, R ~  is the decay rate 

into the TEM mode. It corresponds to the peak at u ~ 0 (i.e. when cost) = 0 or when 

the guiding angle for the TM wave is 90 degrees, for which the E field is perpen- 
dicular to the metallic planes). In this case we integrate over only half of the lineshape 
function, which results in 

Rgo ~ = 3 z / 2 k w  (TEM mode). (2-23) 

This agreement with the lossless case shows that the method of propagating vacuum 
fields into the waveguide structure is consistent with the method based on guided 
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Fig. 2.6. Normalized spontaneous emission rate vs. w/Z The curves are for r-values of 1, 0.82, 
0.67, and 0.50. 

modes• The method of propagating vacuum fields is more general as it can treat the 
lossy case. 

2.5 Results for Lossy Metallic Photonic Well 

The results of the calculation with r = 1, 0.82, 0.67, and 0.50 are shown in Fig. 2.6. 
Note that 

1. Even for the r = 0.5 or r 2 = 0.25 case, the horizontal dipole emission rate at 
w ,~ 0.62 is enhanced by 1.6 times and at w = 0.252 is reduced by 4 times. 

2. Even for the r = 0.5 or r 2 =  0.25 case, the vertical dipole emission rate at 
w = 0.252 is enhanced by a factor of 2 times. 
3. The total emission rates of all the vertical and horizontal dipoles approach the 
free-space value of 1 when w >> 52. 

2.6 Results for Metallic Planar Microcavity 

The above results can be applied to predict spontaneous 
emission in a planar microcavity,  say with a 0.52 long 

cavity. In that case the total decay rate modification is as 
described above at w = 0.52. The spatial emission pat- 
tern can be studied by plotting the emission rates (per 
radian of 0 )  as a function of the angle 0.  This is shown 
in Fig. 2.8 for the cases with w = 0.52 and w = 0.552, 
respectively. They describe the spatial emission into the 
cavity mode for a parallel-plate metallic microcavity. As 
pointed out earlier, the emission energy is sharply peaked 
atk~=k~ as r - ,  1. 

Fig. 2.7. Illustration of 
the angle 0 between the 

k- -vector and the z-axis. 

2.7 Emission Rate  in Lossless Metallic Photonic Wire 

For a lossless rectangular waveguide (metallic photonic wire), we again use the mode 
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Fig. 2.8. Normalized spontaneous emission rate per unit angle for TE mode at two different 
plate separations. The curves corresponds to r = 0, 0.5, 0.9, 0.99, 0.999, and 0.9999 respec- 
tively. 

approach to find its modification of spontaneous 
emission for a dipole placed inside the wave- 
guide. Let a and b be the dimensions of the rec- 
tangular cross-section. 

The electric fields for a TE mode are 

{ E x = k~ cosk,,,,xsink,,yy, 

Ey k,~, sink,,~xcosk,,,yy, (2-24) 

E~ = 0; 

where k,= = mxrc/a and k,,,y = myrc/b. The 

mode indices mx and my are non-negative inte- 

/ 
v X 

Fig. 2.9 The rectangular wave- 
guide. 

gers, but they cannot be both zero at the same time. They are also bounded by the 

condition k,~, k,,~ _< k = nco/c. For a TM mode we have 

_ ik~k, cosk,,~xsink~y, 

ik,,,yk ~ 
Ey - k---i-k~ sink,,~xcosk ~y,  (2-25) 

Ez = sink,,~x sinkmyy. 

To find the density of states, we quantize the field in the z direction along a line of 
length Lz. In this case 

pvh (hCO) _ L, dk, (2-26) 
2~r dco ' 

and 
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Rxdip°le'TE - -  
m , ~ , %  

R X dipole,TE - -  - -  
o,% 

x dipole ,TM - -  R,~,m, 

For a y-dipole, 

I ml COFm(Xdip°I''Y~P°") 
2¢oL~A.,od ° 

where the mode area factor Amo~ is given by: 

Amoa" Jdxf  dyff"(x'y) 2 

When normalized by the free-space value, the decay rate for an x-dipole is 

12~/C~y cos 2 k,,~x sin 2 k,,,yy (TE mode, m~ ¢ 0) 
abk[kzl(k 2 -k~)  

6re sin 2 k,,,yy 
abklLI 

12 k, 
abk3(k ~ -k~)  

C O S  2 k,,~x sin 2 k,,yy 

(2-27) 

(2-28) 

(TE mode, m x = 0) (2-29) 

(TM mode) 

y dipole,TE 12a]c~ • 2 
R,,~,,,, = a b k l k - - ~ - k ~ ) S l n  k,~xcos2k,,,yy my*O 

R Y d i p o l e , r E  - -  6n" ,~,o ab~[k ~[ sin2 k~x  my = 0 

abk 3 (k 2 _ k~ ) sin2 k,,~x cos 2 k,,,yy. 

12~r(k 2 - k~) 
abk3lkl sin 2 k ~ x s i n  2 k~y .  

The z-dipole does not couple to the TE mode. 

y dipole ,TM R ~ . ,  = 

For a z-dipole, 

z dipole ,TM R,~x ~, ' - 

(2-30) 

(2-31) 

2.8 Results for Lossless Metallic Photonic Wire 

The results of  calculation are shown in several fig- 
ures. They are prepared for a few cases of  interest. 

Case I: Dipole at the Center 

In this case the dipoles are at the center of  the 
waveguide. As an example, we present the case 
when a = 2b. The emission rate is plotted as a 
function of  a in the normalized unit of  a / 2 .  Note 

that: 
1. At a < 2 / 2 ,  the emission rates for all the x, y, 

, b 
Dipole ~ x 

Fig. 2.10. Dipole at the center 
of a rectangular waveguide. 
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Fig. 2.11. Normalized spontaneous emission rate vs. a/~. for a dipole at the center of a rectan- 
gular waveguide with a = 2b. Two curves are shown for each case, one for the lossless, the 
other for a lossy waveguide with g = 0.01. The lossy case will be discussed later. 

and z dipoles are completely suppressed. 
2. At a = 0.52, the TE mode emission rate for the y dipole approaches infinity and 
is larger than 10 for 0502 < a < 0.532. At a = 2 the TE mode emission for the x- 

dipole approaches infinity and is larger than 5 for 1.002 < a < 1.012. 
3. At a ,~ 1.12 the TM mode emission rate for the z-dipole approaches infinity and 
is larger than 10 for 1.122 < a < 1.132. 
4. Emission into TM modes is completely suppressed for a < 1.12. In this region, 
we can experience to have only emission into the TE guided modes. 
5. The x, y-dipole emission into TM mode remains suppressed until a z 1.412 and 
a = 2.072 respectively. Even then the emission 
rates are low. & 

6. The z-dipole only emits into the TM mode and Y ] ~ a ] 
the x and y dipoles emit into both TE and TM 
modes, b 

Dipoles 
~ x  Case H: Dipole averaged over x 

In this case, we have a quantum well situated at the 
center of the waveguide in the y direction. We cal- 
culate the emission rate by integrating over the 
length a along x. As an example, we present the 

Fig. 2.12. A quantum well at 
the center of a rectangular 
waveguide. 
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Fig. 2.13. Normalized spontaneous emission rate. The parameters are the same as in Fig. 2.1 t, 
except that the rates are averaged over x, as shown in Fig. 2.12. 

case where a = 2b. The emission rates are plotted as a function of  a / 2 .  Note that: 

1. At a < 2 / 2 ,  the emission rates for all the x, y, and z dipoles are completely sup- 

pressed. 
2. At a = 0.52,  the TE mode emission rate for y dipole approaches infinity and is 

larger than 10 for 0.5002 < a < 0.5082. At a = 2 ,  the TE mode emission rates for the 

x a n d y  dipoles approaches infinity and are larger than 5 for 1.0002. < a < 1.0052.. 

3. At a ~ 1.12., the TM mode emission rate for the z dipole approaches infmity and 

is larger than 5 for 1.122. < a  < 1.132.. 
4. Emission into the TM modes is completely suppressed for a < 1.12. In this re- 

gion, we experience to have only emission into the 
TE guided modes. 
5. The total decay rate of  all the x, y, and z dipoles 
approaches the free-space value of 1 when y ~  
a >> 52'. / 6. The z-dipole only emits into the TM modes and 
the x and y dipoles emit into both TE and TM 
modes. 

a 

Dipoles b 

r X 

Case HI: Dipole Averaged over  x at  Of f -Cen te r  

Here a quantum well is placed off-center in the y 
direction, as shown in Fig. 2.14. 

Fig. 2.14. A quantum well at 
off-center of a rectangular 
waveguide. 
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Fig. 2.15. Normalized spontaneous emission rate. Same parameters as in Fig. 2.13, except that 
the dipoles are aty = 0.7b. 

Compared with the previous case, additional lines are seen for x-dipole at 
a = 23, and a ~ 2.063, ; fory-dipole  at a z 1.123,, a = 1.422, and a = 1.83' ; and for 

z-dipole at a = 2 .062.  

2.9 Lossy Photonic Wire 

We have seen that in the planar waveguide case, adding loss to an ideal metallic 
waveguide will broaden the originally discrete values of  the wave vector component  
k~. The same can be expected for the values of  kx, ky in a rectangular waveguide. 

To simulate the effects o f  loss, we give each of  the incremental contribution R,,.,,,, 

a/rc for both k x and ky, and convert it into a dou- a Lorentzian lineshape a2 + (k - ko) 2 

ble integral over k x and ky. That is, we take the expression for the lossless case: 

RLO.te. = 3rr F,. 2 e,,~ "eu z (2-32) 

,,,x,,,,, k k~ f f dxdy ff~ 2 

and turn it into 
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q 

1 k 2 ]/J (2-33) X 

Here both F and ~-,,, are functions of kx and k, .  

This is an approximation method that is expected to work when the loss is small. 

Quantitatively, as the spacing for k,~, k~  in k -space are zr/a and zr/b, we should 

have c~ x << n'/a and a ,  << Ir/b. For convenience, let ax -- gFr/a ,  ~Zy = g,Tr/b, 

then gx, gy < <  1 for this approximation to be valid. In other words, the loss mecha- 

nism is treated as a perturbation to the lossless solution, thus it is only applicable 
when adjacent modes do not significantly overlap. 

2.10 Results for Lossy Metalfic Photonic Wire 

The inclusion of loss has some obvious effects on the spontaneous emission rate, it 
removes the singularities at the cut-on wavelengths and smoothes their sharp edges. 
Results of the calculation are shown together with the lossless case in Figs. 2.11, 2.13, 
and 2.15 for comparison. We have also made gx = gy = g for simplicity, and have 

used g = 0.01 to generate all the plots. 

Case I: Dipole at the Center 

The results are similar to the lossless case. Note that: 
1. At a = 0.52 the y-dipole emission into the TE guided mode is enhanced almost 
20 times compared to free-space value. 
2. At a = 1.012 and a ~ 1.422, there are about 5 and 4 times enhancements for the 

x-dipole emission into the TE guided modes. 
3. For the z-dipole emission into the TM modes at a ~ 1.122 and a ~ 1.812, the 
enhancements are 8 and 5. 

Case H: Dipole Averaged over x 

1. The emission rate from the x-dipole into TE mode at a ~- 1.012 is almost unaf- 
fected by the averaging. 
2. The emission from the y-dipole into TE mode at a e 0.52, and the emission from 
the z-dipole into TM mode at a ~ 1.122 are reduced by about 50% after the averag- 
ing. 

Case HI: Dipole Averaged over x at Off-Center 

Compared with Case II, a quantum well at the center, we see that: 
1. The emission rate from the y-dipole into TE mode at a ~ 0.52 is almost the 
same. 
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2. The emission from the x-dipole into TE mode at a = 1.012, and the emission 
from the z-dipole into TM mode at a ~ 1.122 are reduced by about 30%. 

2.11 The Metallic Planar Waveguide (Metallic Photonic Well) Limit 

I f  we take the limit a ~ oo for the lossless rectangular channel waveguide discussed 
above while keeping b fixed, we shall expect to get the planar waveguide results. Us- 

and sum ing the results for the lossless rectangular waveguide, let us take x = 7 a ,  

over the index m x for k,,,.  Smce 

- k ~  , let us define a variable 

m~;,r As 
s= a~~/k2 - k ~  with 

' A m  x 

k,~ ranges from 0 to a max imum value of  

z (2-34) 

The summation over m x becomes an integral over s .  The symbols that depend on 

m x become 

k~, m~z ~ ~  2 }k,} lJ =xJ(k2 k~y = ~ = s  - k ~ , a n d  = k 2 - k  2 - k  2 - ) ( 1 - s  2) 
a r r a  m y  ' 

(2-35) 
Putting them m the decay rate formulas, for the total decay rate of  an x-dipole we get 

R ,,, " ~w,. = z.~ y ,, (R  ,,. ,, dipo,..'rE .", + R ,,." ea~,o.TM ,", ) 
mx 

--~ bk 3 

_ 3z  (k 2+k  ~ x .  2 2bk3 ,,,y)sln k,,,yy = Results f o r p l a ~ w a v e g u i d e .  (2-36) 

"~3 
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Fig. 2.16 Normalized total spontaneous emission rate vs. b/~,. The dipole is at the center, and 
we have set a = 100b. For a lossless rectangular waveguide, the rate approaches infinity at the 
cut-on of a mode, however, they show up as finite spikes in this figure due to numerical round 
off. 
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We have calculated the total emission rate for such a rectangular waveguide with 
a = 100b. The results are shown Fig. 2.16, which can be seen to agree with the planar 
waveguide results shown earlier in Fig. 2.4. 

2.12 The Metallic Photonic-Wire Microcavity, Metallic Photonic Dot, and the 
Purcell Factor 

Let us consider a cavity formed by placing two highly reflecting mirrors at z = 0 and 
z = d of a lossless rectangular waveguide. This is a metallic photonic-wire micro- 
cavity, which can also be referred to as a metallic photonic dot. Let r and t be the re- 
flection and transmission coefficient for the field amplitude. It can be shown that if 

the original field amplitude in the waveguide is ff~, then the field amplitude in the 

cavity is given by 

- -  2 ( l - r )  2 +4 r s in  2 k , , = ( d - z )  -- 2 
F,~ = t 2 , - 7 - - - - - 2 - ~ ~ - -  Fml . (2-37) 

( 1 - r )  +4r  sin k,=d 

This shows that for our cavity, the spontaneous emission rate is just that for the rec- 

tangular waveguide multiplied by the factor in front of if,, 2. 

For a high Q cavity, r ~ 1, and we can neglect the first term ( l - r )  2 in the nu- 

merator. If  the dipole is on resonance with the cavity, then sink,=d -- 0, and we are 

left with 4 r  • 2 ~_~-sln k = z  =-~-sin 2 k ,~z ,  where we have used r 2 + t  2 = 1, and the cavity 

finesse F = ~ On the other hand. the finesse is related to the cavity Q by 
l _ r  2 • 

F = QAco/co o , where co o is the resonance frequency, and Aco is the free spectrum 

range. For simplicity we consider the case of k,,~ = k ,  for which we can get 

Aco = a v / d .  Hence the enhancement factor from the cavity is -~-4Q sm 2 k,=z.  

Combine this with results for the waveguide, we can get the cavity enhancement 
factor. For example, for an x-dipole, TE mode of the field with m~ = 0, 

24nQ . 2 
R c = ~ s l n  k ~ y s i n  2 k~z ,  (2-38) 

where V c -- abd  is the cavity volume. When averaged over the spatial coordinates, we 

have 

6nQ 3Q23 (2-39) 
Rc = k3V - 4~r2V . 

The Purcell factor describes the enhancement of spontaneous emission for a dipole 
placed inside a cavity. 1'1°'1~ It turns out that the above formula is just the result pre- 
dicted by the Purcell factor. 
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2.13 Achieving Near-Unity Spontaneous-Emission Coupling Factor and Strong 
Decay Rate Modifications with Metallic Photonic-Wire Microcavity 

From Fig. 2.13, it is clear that if we choose a rectangular waveguide dimension with a 
normalized value of about 0.52 < a < 2 ,  the x-dipole and z-dipole emission will be 
almost completely suppressed and all the emission will come from the y-dipole emit- 
ring into the TE mode with y polarization. This, in theory, will provide near-unity 
value for the spontaneous-emission coupling factor. At the same time, we also see that 
the total decay rate for the y-dipole will be strongly inhibited at a < 0.52 and strongly 
enhanced at a > 0.52. It is important to note that the use of a rectangular waveguide 
with a 2 to 1 aspect ratio for the waveguide width vs. height is important for breaking 
the polarization mode degeneracy. This makes it possible to achieve the near unity fl 

value. 

2.14 Smallest Possible Metallic Microcavity? 

The smallest microcavity may be realized with above metallic channel waveguide 
having a length forming a haft-wavelength microcavity. This length, denoted as e c , 

would be dependent on the velocity of propagation for the guided mode. It turns out 
that at a = 0.5,~ the mode in the metallic channel waveguide will propagate with zero 
velocity and hence g c will be infinitely long. Thus, there is an optimal value for g c. 

It is not hard to show that to form a half-wavelength microcavity, we must have 

g c = a/~f4(~) 2 - 1 . As b = a / 2 ,  the physical volume of the cavity would be given 

by Vc]~Y~i'~=(½a3)/~{~)2-1. The sinusoidal variation of the mode will give a 

mode width approximately equal to half the physical width 0.e. half its zero point 
width). It turns out that the only dipole that is coupled significantly to the guided 
mode for a <A is they  dipole (see Fig. 2.13). Furthermore, the mode that t hey  di- 
pole couples to is the TE mode polarized in the y-direction and has sinusoidal varia- 
tion only along the x direction (i.e., along side "a"). There will also be sinusoidal field 
amplitude variation along the cavity length. Hence the mode volume is given ap- 
proximately by the cavity physical volume multiplied by (~)2, giving ~7~e= 

(~ a 3 ) / ~  - 1 .  The smallest possible microcavity for the ideal metal case, it turns 

out, is achieved with a = 0.61,t. For 2 = 1.5/an, we get a = 0.92/an, b = 0.46Hm, 

gc = 1.316/an, and v~m~ ~ = 0.139/2m 3 (This value is close to that of a cavity formed 

with a cubic half-wavelength box for which: V m°~° o°~ . . . .  = ( ~ ) 3  x (-~)~ = 0 . 1 o 5 / a n  3 ). I f  w e  

fill the cavity with a semiconductor active medium with a refractive index of 3.4, then 
we will have 1/7~' = 0.0035/ . /1!13 (with a = 0.271/an, b = 0.135/an, 

g, -- 0.387/an ), which is to be compared with the dielectric case in the next section. 

2.15 Real vs. Ideal Metals 

As the above results assumed ideal metal, the use of real metal will modify the results 
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somewhat. Part of the modification will come from the fact that real metal has a finite 
skin depth. This will modify the decay rate result somewhat when the two metallic 
plates forming the cavity are very closely spaced. For example, the inhibited sponta- 
neous emission that occurred at small plate separation for the horizontal dipole may 
be somewhat reduced. This behavior is similar to the case of "leaky dielectric 
waveguides" discussed in section 3.3. Another part of the modification will arise from 
deviation from the rc phase shift for reflection from the surface of a real metal. This 
deviation could lead to slight changes in the peak locations and their magnitudes for 
the various curves describing the modification of spontaneous emissions. The general 
characters of these curves, however, remain similar.~° 

3 Spontaneous Emission in Dielectric Photonic Wells, Wires, and 
Microcavities 

In this chapter, we will discuss the spontaneous emission characteristics in dielectric 
photonic well structures and photonic wire structures. We first introduce the calcula- 
tion method of the spontaneous emission rate in the dielectric photonic well struc- 
tures. The photonic well structure is in the form of a two-dimensional dielectric planar 
waveguide, and the spontaneous emission rates are calculated for the excited dipoles 
inside the dielectric waveguide. We then present the modification of the spontaneous 
emission rates in a dielectric photonic wire structure in the form of a rectangular di- 
electric channel waveguide. The theoretical calculations were carried out for the rec- 
tangular dielectric waveguides with excitons along the center plane such as a single 
quantum well structure. We present some numerical examples and discuss about the 
optimum structures. Lastly, we discussed the spontaneous coupling factor that could 
be achieved by a dielectric photonic-wire microcavity ring laser. 

3.1 Spontaneous Emission Rate in a Dispersive Lossless Bulk Dielectric 
Medium 

Before we describe the modification of spontaneous emission rate in a dielectric 
photonic well or wire, it would be of interest to review the modification of spontane- 
ous emission in a bulk dielectric medium./2 The refractive index of the medium can 
be frequency dependent but the medium will be assumed to be lossless. As discussed 
in Landau and LLftshiz ~3, such a medium can be described by the following Hamilto- 
nian: 

fd3 l[ +/ 0 rm ] 
H = j  2 L dco m 

H=~d3xCnm~oE2m, (3-1) 
1) m 

where E m and H,,, are the electric and magnetic fields for that mode, v m is the group 

velocity, and n,, is the refractive index at frequency D ~ .  £2 m is the physical fre- 

quency for mode k m in the medium. The normalized constant in the electric field op- 
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erator is equal to the electric-field strength carried by haft a photon energy. It can be 
found by setting H = h.Opm / 2, giving 

E.  t,2 o%n.c ) ' (3-2) 

' '2 

which is to be compared with E,, ~, 2eVe ) for a dispersionless dielectric medium 

= (  hco= ) '~2 
and E m (.2~oV % J for free space. 

On the basis of the above argument, the macroscopic field operators for a dispersive 
dielectric medium is given by 

f hI~mv" ")l'2e~[fi~,.(t)e~~ a,..(t)e ] (3-3) 

~1/2 

- * ¢,..~ ^ t  ( t ) e  -'~" "~|. /%~r(r,t)= y . (  hv,. ) (fire ×e,.~)~,,~(t)e -am~ (3 -4) 
,~.gt 2"oVQn,,ne,,c ) J 

Using these field operators, the decay rate for a dispersive dielectric bulk medium is 
given by 

~" = ~ Y r s ,  (3-5) 

where ~'~s is the decay rate of the same dipole in free space. Note that the group ve- 

locity term from the field amplitude factor is cancelled by another group velocity term 
from the dk / do factor in the density of states formula. This decay rate formula can 
also be obtained by propagating vacuum field into the bulk medium from all dielec- 
trics. 12 

The above decay rate formula does not include the effect of local field. The inclu- 
sion of local field effect has been discussed in the literature. 14 If the emitting atom is 
small and occupy a lattice site in a crystalline dielectric medium with cubic lattice, 
then the inclusion of the local-field effect will lead to a decay rate of: 

2 2 

The factor in the right side of Eq. (3-6) is often referred to as the local-field correction 
factor. This factor can be derived if one assumed a "virtual cavity" model. In the case 
where the atom is relatively large or has a low polarizability, the local field effect 
tends to be given by a "real cavity" model, giving: 

= I  3(61%)]~ 
Y L I ~ 0 )  J ~/(c I o%)~.m (3-7) 
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3.2 Spontaneous Emission Rate in Dielectric Photonic Well 

The dielectric photonic well structure consists of a high-refractive-index guiding 
layer with refractive index nD and thickness / (labeled as region 2) and low-refractive- 
index claddings with refractive index n (labeled as region 1 and 3) as shown in Fig 
3.1. With similar derivation as Eq. (2-4) in the case of a metallic planar waveguide, 

one can show that the spontaneous emission rate contribution to 7g from mode m (i.e. 

due to emission into mode m) is given by: 

2" k r 27r .. 2 2 2 LxLy d ,,~ (3 -8) 

where[~=]~= hc°~F'(z'~")2 L,.~, f°~ ~a-~dz6(z)''(z)2 
2e(z~,~)L~LyL,~od, ' e(zp,,~)F,,(zp,,a) 

The total spontaneous emission rate into guided modes yg is given by 

y~ = ~ y ~ .  (3-9) 
m 

The expressions for ffr~ in region 1 and 2 are: 

For even TE modes 

{~= exp[ -q (z -  l D /2)] --~ (regionl) 

Fm= "~ cos ( k ,~Xos (k= l  v -  (3-10) / 2) --* (region2)'  

For even TM modes 

I(~xi cos 0 + g= sin 0) exp[-q(z - l D / 2)] ~ (regionl) 

if" = [g,i cos 0 sin(k,~z) / S + ~ (n / n~)= sin 0 cos(k=z) / C ~ (region2)'  

(3-11) 
where C = cos(k,,~lD/2), S = s i n ( k . J J  2), and q is the decay constant in region 1. 

For odd modes, the cos(k,,~z) and sin(k~,z) (also C and S) in region 2 are inter- 

changed. 

~ n 2 

n 3 

Fig. 3.1. The schematic diagram of a photonic well. 
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Using the relation k : ~/k,,~ 2 +k~  and k = coAn o / c ,  where k,~ is also a function 

kdk 
of k,,,y, we can solve for k,~,ydk,~y ' which then enables us to replace k,~,rdkm~y by 

k d k .  TO express k= in terms of k ~ ,  we use the pair of equations normally used in 

solving for the wave-guide dispersion relation. They are given for example by: ~5 

q2 = k2(1 - ( n / n o ) L ) ,  where q = k= tan(k,~l o / 2 )  for odd TE modes. The result is 

k , ~  dk , ~  1 - n ~2 

kdk  - C~C~[ l+Cay  / (cosTs iny)]+n~2 , (3-12) 

where n u = n/n~,C~ = 1 for TE modes, C~ = (n~2) 4 for TM modes. The values of C 2 

and C 3 are dependant on whether the mode is odd or even. For even modes, 

C 2 =tany,  C 3 =1.  For odd modes, C: =cotany, C3 = - 1 .  By taking k = c o A n ~ / c ,  

and dk /dco  = n D / c ,  we can compute the value for Yv-. 

The spontaneous emission rate into the radiation modes is given by 
2~r it/2 

"e~pol~ I.I p.  sinO., (3-13) 
o 0 

where 

(R2~ /T2~ )exp( ik.~l D/2) , (3-14) 
G m : R21(T21TI2 --R21RI2/Tu)exp(ik~lo) +(R~2/T~2T2~)exp(-ik.~t~) 

k,,= = D r c o s ( O . ) / ( , ~ : , / n D ) , 2  ~ =2n~/coA, R21 = ( h - g ) / ( g + h ) = - R  n , where 

T:t = 2 h / ( g + h )  = T u g / h ,  andO, is the incident angle in the low-index region. De- 

pending on mode polarization, g and h are given by 
g = 2rmcosO,[TE] = 2:rcos0,/n[TM] and h = 27o7 D cosO,[TE] = Drcos0 , /no[TM].  

The angles O, and O, are related simply via the Shell's law of refraction, i.e. 

O, = s in - l ( s in (O, )n /n , )  and 0, = 0 , .  We have labeled the low-refractive-index me- 

dium as region 1 and the high-refractive-index medium as region 2. R~2 is the reflec- 
tion coefficient for the wave in region 1 going into region 2. 

Thin Medium Limit: 

In the limit when I o << ~ , we can show that 
D 

i"l × , 

Yhori = Y® 'Yve, = xy®. (3-15) 

This gives for n=l and nD=3.4: Yho,, = 0.294y~ and y,er, = 0.0022y~, where y~ is the 

decay rate in the bulk medium. 

Numerical examples: 



278 

v, mi,m Dipole 
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• "rM _ ~ .  
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Fig. 3.2. Spontaneous emission rates for the case riD=3.4 and n=l.0: The normalized sponta- 
neous emission rate R~(TM) and RR(TM) (x20) of the vertical dipole vs. the normalized 
photonic well thickness from 0 to 2. The total normalized spontaneous emission rate R~ of 
the vertical dipole is also given. 
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. . . . . .  

: 

/ " - . ._ /  

0.4 0.8 1.2 1.6 2.0 

Fig. 3.3. Spontaneous emission rates for the case nD=3A and n=l.0: The normalized sponta- 
neous emission rate Rg(TE), Rg(TM), RR(TE), and RR(TM) of the horizontal dipole vs. the 
normalized photonic well thickness from 0 to 2. The total normalized spontaneous emission 
rate R~p of the horizontal dipole is also given. At 0, the contribution is from TE0 mode; at 2 is 
from TE0 and TE2 modes; at 1 is from TM1 mode; at 3 from TM1 and TM3 modes. 

The spontaneous emission rates of  the horizontal and vertical dipoles in various cases 
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are investigated as a function of the waveguide thickness. Fig. 3.2 shows the sponta- 
neous emission rates of vertical dipole for the case of riD=3.4 and n=l.0. We note that 
the vertical dipole does not emit into the TE modes or TM odd-order modes. The 
spontaneous emission rates into the TM even-order guided modes and TM radiation 
modes and the total spontaneous emission rate are shown by the dotted long-dashed 
line, the thin solid line and the thick solid line, respectively. The total spontaneous 
emission rate for the vertical dipole begins to reduce substantially at a waveguide 

thickness below l~ =--0.5(2~ /x/-~v-n 2 )(half-wave thick). It reaches the value of 

(n/nz~)~ "=- 0.002 at 1D = 0.  Note that in the region between 

0 < l D < 0.5(A~ / ~ - n 2 ),  the vertical dipole emission is highly suppressed. 

Fig. 3.3 shows the spontaneous emission rate of the horizontal dipole for the case of 
riD=3.4 and n=l.0. We show the spontaneous emission rates into the TM guided 
modes (thin solid line), the TE guided modes (dotted line), the TM radiation modes 
(dotted long-dashed line) and TE radiation modes (short-dashed line) and the total 
spontaneous emission rate. In this figure, we see that the total spontaneous emission 
rate for the horizontal dipole begins to reduce substantially at a waveguide thickness 

below lD---0.25(2~/xf~n-n 2 ) (quarter-wave thick). It reaches the value of 

(n /n  v ) ~ 0.3 at lz~ = 0.  Note that in the region between 

~" 0.8 

Vertical Dipole 

total 
= TM guide 

TMrad 

_ _/X =_ 
o ~ ~  

o s 4 6 8 1o 12 14 

(a) 

Hotizol~al Dipole 

] . 4 ~  . . . . .  ' ~ ' E ~ i d e q  

1-, --r r 
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0.6t ~ ' i  " " " 

~ J \ I v , c , . ' . -  - - ~ - ~ ' ~ - ~  

o.oJ 2 4 6 8 10 12 I1 

(b) 

Fig. 3.4. Spontaneous emission rates for the case nD=3.4 and n=l.0: (a) The normalized 
spontaneous emission rate Rg(TM) and RR(TM) (x20) of the vertical dipole vs. the normal- 
ized photonic well thickness from 0 to 15. The total normalized spontaneous emission rate 
Rsp of the vertical dipole is also given. (b) The normalized spontaneous emission rate Rg(TE), 
Rg(TM), RR(TE), and RR(TM) of the horizontal dipole vs. the normalized photonic well 
thickness from 0 to 15. The total normalized spontaneous emission rate R~ v of the horizontal 
dipole is also given. 
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0"15(A'fs / ~ D  -r/2 ) < lV < 0.5(2~ / ~ - n  2 ), a high percentage (>95%) of the 

emission goes into the lowest-order TE guided mode. Combined with the result for 
the vertical dipole, we see that even for a randomly oriented dipole, a high percentage 
of the emission can be made to go into the lowest-order TE mode 

with0.15(&~/~f~D-, ,  2 ) < l v  < 0 .5 (2~ /4n~  - n  2 ) .  Fig. 3.4(a) and 3.4(b) respec- 

tively show the spontaneous emission rotes into the vertical dipole and the horizontal 
dipole, respectively, in the range of the normalized thickness from 0 to 15. 

Fig. 3.5 shows the spontaneous emission rate of the vertical and horizontal dipoles 
for the case where nD=100. In Fig. 3.5(a), the spontaneous emission rate from the 
horizontal dipole into the TE guided modes is given as the short-dashed line and the 
TM guided mode as the dotted long-dashed line. The spontaneous emission rate into 
the radiation modes is too small to be shown in the figure. The total spontaneous 
emission rate is shown as the solid line. In Fig 3.5(b), the spontaneous emission rate 
of the vertical dipole into the TM even-order guided modes is given. It overlaps with 
the curve for the total spontaneous emission rate, as the spontaneous emission rate 
into the radiation mode is too small to be seen. From Fig. 3.5, we see that in the limit 
of high refractive index, the emission into the radiation modes is negligible. Other- 
wise its behavior is similar to the nD=3.4 case, in that we can make the spontaneous 
emission go into mainly the lowest-order TE guided mode with 

0.15(2/, / ~rn-~ - n  2 ) < I D < 0 . 5 ( ~ , , / , f - ~ - n  2 ),  and the emission of the vertical di- 

pole is nearly completely suppressed in that region. 
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Fig. 3.5. Spontaneous emission rates for the case nt~=100 and n=l.0: (a) The normalized 
spontaneous emission rate Rg(TE) and Rg(TM) of the horizontal dipole vs. the normalized 
photonic well thickness from 0 to 2. The total normalized spontaneous emission rate R~p of 
the horizontal dipole is also given. The value RR(TE) and RR(TM) is too small to be ob- 
served; (b) The normalized spontaneous emission rate Rg(TM) of the vertical dipole vs. the 
normalized photonic well thickness from 0 to 2. The value Rr(TM) is too small to be ob- 
served. 
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3.3 Comparison between dielectric and metallic planar waveguides 

It is interesting to compare modification of spontaneous emission in dielectric and 
metallic waveguides. The main difference between the metallic and dielectric cases is 
that the metallic structures tend to achieve enhancement (i.e. increase) in the sponta- 
neous emission rates while the dielectric structures tend to achieve suppression in the 
spontaneous emission rates and cannot provide much enhancement. This difference 
can be traced to the difference in boundary conditions: the field changes sign when 
bounced from a metallic surface while it does not change sign when bounced from a 
dielectric interface if the field is incident from the high-refractive-index medium side. 
For this reason, a lossy planar metallic waveguide should really be compared with a 
leaky dielectric waveguide with the middle layer having a lower refractive index. 

From another point of view, we see that when the middle layer of a dielectric 
structure has lower refractive index, the field in it will bounce between the two inter- 
face boundaries and gradually leak out. This is just what happens in a lossy metallic 
waveguide. On the other hand, with a high refractive index guiding layer, radiation 
modes can leak out as in a lossy metallic wavegnide, but guided modes propagate 
without any attenuation. There is no counterpart for such a mode behavior in the case 
of a metallic waveguide. 

We have calculated spontaneous emission rate for both a lossy metallic wavegnide 
and a leaky dielectric wavegnide under comparable conditions. The results are shown 
in Fig. 3.6. Evidently they agree with each other quite well when the width w > 0.5)t. 
When the width gets smaller than half a wavelength, we see obvious differences be- 
tween the two cases. This can be explained if we notice that when the dipole is close 
to the interfaces, it can sense evanescent fields in addition to what can propagate into 
the middle layer in the first place (i.e. the fields that are allowed by Shell's law). Thus 
the total vacuum fields become stronger, resulting in stronger spontaneous emission. 
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1.5 2.0 

Horizontal dipole 

dielectric 

r i i 

0.0 0.5 1.0 1.5 2.0 

Fig. 3.6. Normalized spontaneous emission rate vs. w/). The solid lines are for planar metallic 
waveguide with r = 0.5, and the broken lines are for a dielectric structure with an n = 1 layer 
sandwiched between n = 3 layers. The dipole is at the center in both cases. 
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3.4 Spontaneous Emission Rate in Dielectric Photonic Wire 

The modification of the spontaneous emission rate in the dielectric photonic wire 
structure is investigated by using the rectangular waveguide with width a and height b 
as shown in Fig. 3.7. The high-refractive-index waveguiding region has a refractive 
index ng, and the surrounding cladding region has a refractive index rh. The excitons 
are located at the center plane inside the waveguide, respectively. The excitons are 
modeled as three independent dipoles oscillating along the x, y, and z-axis. The 
spontaneous emission rate into mode m is given by 

2;,r 2 -  - 2 - 2  L, dk,,= (3-16) 
Y m , = - ~  ¢,. e,,,~'ed,~(x,Y,Z) IN 2;,r do ) '  

where ~,2_ hc°a ff,,(Fa~pou )~ 
2g(Fm,~ ) L~Amoa, 

with Amode being the effective mode area. 
In order to calculate accurate solutions in strongly guiding waveguides, we cannot 

use the usual effective index methods for weakly guiding waveguides and have to 
develop a numerically more rigorous method. For that, we used the FDM (fmite dif- 
ference method) to calculate the full-vectorial mode fields and the propagation con- 
stants. 16'17'18 The wave equations for the full-vectorial mode can be derived by taking 
the curl of Maxwell's equations and using the vector identity. 

V2E + co2~/.t0 E = V(V. E) (3-17) 

The longitudinal field component is decoupled from the transverse components. 
Therefore, the modal fields can be expressed in the form. 

E = (E, + E~)exp(-iflz) (3-18) 

Substituting (3-18) into (3-17), we can obtain the vector wave equations for the trans- 
verse fields. 

n 

~ x  n 

n 

Fig. 3.7. The schematic diagram of a photonic wire. 
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02Ey 2 E - 02Ex l - OE (3-19) 
&2 + ('°~eUo - # ) , OyO~ /3 -~ 

From the divergence relation V. (sE) = 0,  Ez can be expressed as 

o(e2,) 
i f lE~e = 0(~x)  + - -  (3-20) 

Ox Oy 

Substituting (3-20) into (3-19), we obtain the full-vectorial wave equations that can be 
easily discretized. 

0 1 0( ) +--~-5--+co eCtoE ~ =fl2E~ (3-21a) 
Y r - ~ - -  - -  

gy-; Oy J a¢~ +'°~u°E" NL; ~ - J  Oy ec-/~e' (3-21b) 
ff we know Ex and Ey, then Ez can be obtained using the relation in Eq. (3-20). 

Numerical method for discretization: 

We can discretize the components of Eq. (3-21) based on the finite difference 
scheme ~9 either using an uniform or a nonuniform mesh. The nonuniform mesh with a 
dense grid around the dielectric boundary reduces computing time and achieves desir- 
able accuracy. However, the uniform mesh gives rise to severe penalty in the com- 
puting time and memory for the same accuracy. After direct discretization based on 
the following figure (Fig. 3.8), the finite difference equations are given below. Fig. 
3.8 shows the meaning of Ax(m), Ax(m-1), Ay(n) and Ay(n-1) defined for the 9 adja- 
cent grid points in the mesh. For the nonuniform mesh, we have Ax(m)¢Ax(m-1) and 
Ay(n)¢hy(n-1) in general. First the various terms in Eq. (3-21a) which is the eigen- 
value equation for E~ are discretized as shown by Eqs. (3-22), (3-23) and (3-24). 

(n+l ,m-l) .  
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Fig. 3.8. The finite difference scheme with a nonuniform mesh. 
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~ ( n ,  m - 1) + ~ ( n ,  m )  hx(m - 1) 
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[ e(n, ml(s(n+l'm+l)Ey(n+l'm+l)-s(n-l'm+l)Ey(n-l'm+])]-+ 1) Ay(n) + Ay(n - 1) 

e(n. ml(C(n+l'm-1)Ey(n+l'm-1)-g(n-l'm-1)Ey(n-l'm-1))]- " Ay(n) + Ay(n - 1) - 

1 E(.E,(n+l,m+l)-E,(n-l,m+l)) 
Ax(m) + Ax(m- 1) ~y(~  + A f t - l )  - 

Ey(n+l,m-1)-Ey(n-1, 
-Ay(n)-----+ Ay(n-1"-------) m-l)jj )1 

1 (s(n+l,m+l) ) 
=(Ax(m)+Sx(m-1)XAY(n)+Ay(n-1)) ( c~n-~n,m--~ 1E,(n+l,m+l)- 

1 (c(n-l,m+l) _l]Er(n_l,m+l) - 
(Ax(m)+ 5x(m-1)XAy(n)+ Ay(n-1))(, ~ - - ~ , ~ +  1) 

1 (c(n+l,m-l) ) 
(Sx(m) + Ax(m - 1)XAy(n ) + Ay(n - 1)) ~, ~ 1 Ey (n + 1, m - 1) + 

1 (c(n-l,m-1)_l]Ey(n_l,m_l) 
(Sx(m) + Ax(m -1) XAy(n) + Ay(n-1) ) -~(n,-~--D 

(3 -24) 
The various terms in Eq. (3-21b) which is the eigen-value equation for Ey are dis- 

cretized as shown by Eqs. (3-25), (3-26) and (3-27). 

4. _ ~ [ l < ~ y > ]  

0 2 
@ (-,,,,) Ay(n- 1) + Ay(n) 

2 (c(n+l,m)Ey(n+l,m)-e(n,m)Ey(n,m)] 
~(n + 1, m) + c(n, m) ~. ~y(ni - 

2 (s(.,m)Ey (n,m)-s(n-,,m)Ey (n - 1, m))]  

c(n -1 ,m)+ c(n,m) (, -5-y~n---~ )J 
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. 

. 

2 2e(n  + 1, m) 
- (tty(n) + Ay(n - 1))Ay(n) E(n + 1, m) + E(n, m) Ey (n + 1, m) - 

2 2e(n,  m) 

(Ay(n) + Ay-(n- l ) )Ay(n)  ~(n + 1 ,m)+  6(n,m) + 
2 2~(., m) l _ .  . 

- - - - -  it~ in, m) + 
(Ay(n) + Ay(n - l ) )~y (n  - 1) e(n - I, m) + c(n,  m) J • 

2 2e(n  - 1, m)  
E y (1"l - 1, m) 

(Ay(n) + Ay(n - 1))Ay(n - 1) e (n  - 1, m) + e'(n, m) 

02Ey 

[ O = E y ]  _ 2 E y ( n , m + l )  2 E y ( n , m )  

~)(,, , , , ,) Ax(m)(Ax(m) + Ax(m- 1)) Ax(m)Ax(m- 1) ~- 

(3-25) 

(3 -26) 

Ax(m) + ~c (m - 1) 

1 [(E,,(n+ 1,m+l)-E:(n+l,m-1).l - 
Ay(n) +-Ay(n -1) L ( --~-(~ +-~c--~---D) 

(E~(n-l,m+l)-E~(n-l,m-1)l] 
~~-i-~j )j 

Ax(m) + ~ c ( m  - 1) 

6(n --1,1 m),('~(n-l'm+l)E"(n-l'm+l)-e(n-l'm-1)E"(n-l'm-1)]] 

2Ey (n, m - 1) 

Ax(m - 1)(Ax(m) + Ax(m - 1)) 

g J--~--&-)(.,.~ &(.)+~y(~-i) × 

l ( . , (n+ l ,m+ l )E~(n+ l ,m+ l ) -e (n+ l ,m- l )E , (n+ l ,m- l ) )_  
e(n  + 1, m) 
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Fig. 3.9. The nonuniform grid used to calculate the modes in the rectangular waveguide. 

_ 1 (e(n+l,m+l) l~E~(n+l,m+l)_ 
(Ay(n) + Ay(n -1)~Axtm) + Ar(m-1)) ~ ~ ) 

1 (g(n+l,m-1) 
(Ay(n) + Ay(n -1) XAx(m) + Ax(m -1) ) ~" ~(~+1,-~ 

1 ~ c (n -  1,rn +1) 

(Ay(n) + Ay(n-1)XAx(m) + Ax(m-1)) ( -ff(n---1,,-~ 
1 (g(n-l,m-1) 

(Ay(n)+ Ay(n-1)XAx(m)+ Ax(m-1))~ ~ 

1)Ex (n + 1, m - 1) - 

l IE  x (n - 1, m + I) + 
/ 

l iE  ̀  (n - 1, m - 1) 

(3-27) 
We used two numerical methods to solve the discretized equations; the alternating 

direction-implicit (ADI) iterative method and the shifted inverse power method. 19'2° 
The shifted inverse power method is simpler for solving an eigenvalue problem. The 
following results were obtained by using the shifted inverse power method. By writ- 
ing the two finite difference equations at each node point of the calculation window, 
the following eigenvalue matrix equation is obtained. 

AE=I32E, (3-28) 
where A is asymmetric banded matrix and E is an eigenvector as the following. 

E=[Ex(1),Ey(1),~(2),Ey(2), • . . . .  , Ex(N),Ey(N)], (3-29) 

where N is a total number of nodes. The mode calculation of the rectangular 
waveguide is carried out on the nonuniform mesh shown schematically in Fig. 3.9, 
where the mesh size closer to the dielectric boundary is continuously decreased, so 
that the smallest size at the boundary is more than 1000 times smaller than the mesh 
size at the waveguide center. 
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Numerica l  Examples:  

The calculated rectangular waveguides are made up of a high-refractive-index semi- 
conductor core (ng=3.4) surrounded by a low refractive-index cladding (n~=l). The 
normalized spontaneous emission rates into the guided modes at a/b aspect ratio 2 are 
shown in Fig. 3.10, where the normalized spontaneous emission rates are expressed as 
a function of the normalized width of the rectangular waveguide given by a/X~, where 

2 = 2 / ,  n2f~----- with ng being the refractive index of the guiding region and ns be- 
- n ]  

ing the refractive index of the cladding region SlLrrounding the waveguide. The figure 
shows the normalized spontaneous emission rates of the dominant five modes TEoo, 
TMoo, TElo, TM1o and TE2o in the range of the normalized width shown. The emission 
rate is the total emission into both the +z and -z propagating directions for each 
mode. The two largest curves show the normalized spontaneous emission rates from 
the x-dipole and z-dipole, respectively, emitting into the TEoo mode. Their magnitude 
at the leading-edge is close to 1.2. We see that the y-dipole does not emit into the 
lowest-order TEoo mode. In this figure, we can see that there is a range of optimum 
waveguide width that gives a single or nearly single mode guiding and high spontane- 
ous emission rate into the lowest-order TEoo mode. We define the upper limit of the 
range of optimum waveguide width as when the width becomes large enough that the 
emission into other modes is half of the total emission into the TEoo mode. (Note that 
there are two dipoles (x and z) that emit into the TEoo mode. Hence this width is at a 
point when the emission from the x-dipole into TEoo mode is about equal to the emis- 
sion from the y-dipole into the TMoo.) We define the lower limit of that as the width 
when the spontaneous emission rate into the TE0o mode drops to half of its maximum 
value. The optimum waveguide width for the single-mode guiding at the aspect ratio 
2 is ranged from 0.32 lain to 0.51 lain. Fig. 3.11 shows the total spontaneous emission 
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Fig. 3.10. Normalized spontaneous emission rates into TEoo, TMoo, TErn, TMm and TE2o at 
a/b--2. 
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rate from the x-dipole. We see that if the normalized width is larger than 1, then the 
total spontaneous emission rate will oscillate around the value of the bulk medium. 
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Fig. 3.11. Normalized spontaneous emission rates from x-dipole into TE0o, TEl0 and TE2o at 
a/b= 2. The total spontaneous emission rate from x-dipole is also given. 

1 4 -  

c 

@ 
~ 07 - 

00 

E 
8e*7 

4e.7 ¸ 

i 
.,~ oe÷o 

'r'. 

= 

.-2 

? 
oe.o ,~ 

i 

1 

~/(ng 2 . n,:) ,,~ 

14 

i ,w @ 

z i  
oo 

~=1 o ~. 

J 

.1• 8e.7 

4e~7 

11 

w ~ a/M(ng ~ . n =),~, 

(a) (b) 
Fig. 3.12. Normalized spontaneous emission rates from x-dipole into TE0o mode (a) and y- 
dipole into TMoo mode (b) as aspect ratio is changed from 1.0 to 3.4. The increment of the 
aspect ratio is 0.2. The normalized spontaneous emission rates are decomposed into the den- 
sity-of-states factor and the effective-field-intensity factor. 
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Fig. 3.12 (a) and (b) respectively shows the case of x-dipole emitting into the TEoo 
mode and y-dipole emitting into the TMoo mode. Here, the emission rates from z- 
dipole into the TEoo mode are not shown because they are proportional to those from 
x-dipole. We see that the aspect ratio 1.6 gives the maximum spontaneous emission 
rate from the x-dipole into the TEoo mode, and the aspect ratio 1.0 gives the maximum 
spontaneous emission rate from the y-dipole into the TMoo mode. The spontaneous 
emission rate curves are decomposed into two factors, the effective field-intensity 
factor and the density-of-states factor, as shown in Fig. 3.12 (a) and (b), respectively. 
The characteristics of the maximum point change can be explained by a careful com- 
parison of the effective field-intensity factor and the density-of-states factor. In the 
case of the spontaneous emission rates from the x-dipole into the TEoo mode, the 
maximum point of the spontaneous emission rate is increased and then decreased as 
shown by changing the a/b ratio from 1.0 to 3.4. In contrast, the maximum point of 
the normalized spontaneous curves of the TMoo mode constantly decreases with an 
increase in the a/b ratio as shown in Fig 3.12 (b). We can say that the normalized 
spontaneous emission rate from the y-dipole into the TMoo mode is rapidly suppressed 
as the aspect ratio increases. In addition to the suppression, the maximum point shifts 
more toward higher normalized width compared with the shift of the maximum point 
in TEoo mode. As a result of the characteristic change of the maximum points of TEoo 
and TMoo modes, increasing the aspect ratio until TMoo mode remains the second 
mode increases the ranges of optimum waveguide width defined above. 

Fig. 3.13 shows the increase in the optimum range by comparing the two aspect ra- 
tios 2 and 3. Even though the maximum point of the TEoo curve at the aspect ratio 3 
becomes smaller, we see that the optimum range increases. Therefore, when we con- 
sider both the magnitude of maximum spontaneous emission rate and the range of 
optimum waveguide width, the aspect ratio 2 can be considered as a reasonable opti- 
mum width even though the aspect ratio 1.6 gives the highest normalized spontaneous 
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Fig. 3.13. Normalized spontaneous emission rates from x-dipole into TEoo mode and y-dipole 
into TMoo mode at a/b=2.0 and 3.0 respectively. 
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Fig. 3.14. Normalized spontaneous emission rates from x-dipole into TEo0 mode as functions 
of normalized height. 

emission rate from the x-dipole into the TEoo mode. 
Fig. 3.14 shows the spontaneous emission rates from the x-dipole into the TEoo 

mode as functions of the normalized height. When the aspect ratio is larger than 10, 
the emission from the x-dipole approaches that of planar waveguide. The peak value 
of number 8 curve is smaller than that of the planar waveguide because this emission 
includes only one mode. However, the peak location is around that of the planar 
wavegnide comparing with Fig. 3.3. 

3.5 Realization of Dielectric Photonic-Wire Lasers 

Using an appropriate waveguide design, we can take advantage of the modification of 
spontaneous emission in manipulating laser properties such as the lasing thresholds, 
the population inversion, the laser modulation, and the carder dynamics. Specifically 
in determining the lasing threshold, the fraction of spontaneous emission channeled 
into the lasing mode called the spontaneous-emission coupling efficiency 13 is an im- 
portant factor. A large ~ value can increase the effective gain of the cavity, making it 
possible to achieve lasing in a small cavity and to attain low lasing thresh- 
old. 21"22"23'24"25 To increase the 13 value, we need to make a strongly guiding laser- 
waveguide, which decreases the amount of the emission rates into the radiation 
modes. This can be accomplished by increasing the refractive index difference be- 
tween the wavegnide core and the cladding. 

For semiconductor lasers, the waveguides can be made up of a high-refractive- 
index semiconductor core (ng=3.4) surrounded by a low-refractive-index cladding 
(n~=l or 1.5). Compared with the conventional laser cavity, the waveguide structure 
gives higher optical confinement and lower emission rates into the radiation modes. In 
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addition to the reduction of the emission rates into the radiation modes, the normal- 
ized spontaneous emission rates into the guided modes will also increase with in- 
creasing refractive index difference. This is because a reduction in the single mode 
waveguide dimension leads to an enhancement in the mode effective field-intensity 
factor. Therefore, the use of the strongly guiding waveguides is a major part to a large 
[3 value. With the refractive index difference, we can optimize the waveguide struc- 
ture by varying the aspect ratio. In the last section, we show the optimum width for 
the single mode guiding in the semiconductor waveguide (ng=3.4) surrounded by a 
low refractive-index air cladding (ns=l). At the optimum aspect ratio of 2, the opti- 
mum width would be between 0.32 [am to 0.51 p.m as shown in Fig. 3.10. The maxi- 
mum spontaneous emission rate into the lowest frequency mode is obtained at 0.38 
/am waveguide width. We can show that the optimum width is not much different for 
the case of SiO2 cladding (ns=l.5). Using the emission rates into the radiation modes 
calculated for cylindrical waveguides, 26 we can estimate the 13 value at 0.19 p.m height 
and 0.38/am width. From our estimation, for a ring cavity with bi-directional lasing 
into the lowest-order TEo0 mode, the [3 value can reach around 0.35 (70% divided by 
two directions). This is much higher than the [3 value of the usual semiconductor laser 
cavities, typically with [3 ~ 104. It is also higher than the microdisk lasers with [3 
0.1, which can be achieved only with a disk diameter smaller than 3 p.m. We call such 
a tiny ring laser that gives high 13 value a photonic-wire laser. 

Based on the calculation of spontaneous emission rate, we realized the photonic- 
wire laser using lnGaAsP/InGaAs epitaxial layers grown by molecular beam epitaxy 
on an InP substrate. The epitaxial layers form a 0.19 tam thick InGaAsP/lnGaAs laser 
structure. Within the structure, three 10 nm quantum wells (Ino.53Gao 47As) were sepa- 
rated by 100 nm barriers (Ino.84Gao.16Aso33Po.67). They were sandwiched by two 70 
nm Ino 84GaoA6Aso.33Po.67 layers on both sides. 

Fig. 3.15. Scanning electron microscope image of a 4.5 gm diameter photonic-wire ring laser 
with 0.4 gm waveguide. 
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To fabricate the laser, we used nanofabrication techniques involving electron-beam 
(E-beam) lithography, reactive ion etching (RIE), plasma-enhanced chemical vapor 
deposition (PECVD) and bonding-etching techniques. First, a 80 nm thick SiO2 film 
is deposited on the wafer via plasma-enhanced chemical-vapor deposition (PECVD). 
E-beam lithography was used to write the ring laser pattern on PMMA coated on the 
SiO2 layer. Subsequently RIE with CHF3 etchant gas was used to transfer the patterns 
down to the SiO2 film, and the PMMA was removed. RIE with a gas mixture of 
methane, hydrogen, and argon was then used to etch the tings down vertically into the 
InP substrate. To place the thin ring laser structure on a low-refractive-index material, 
the substrate was removed via the following technique. The RIE etched chip is de- 
posited with 0.75 ~ thick SiO2 using PECVD. A piece of GaAs substrate covered 
with 0.75 man thick SiO2 was then prepared using PECVD. The two samples were 
SiO2 face-to-face bonded together with acrylic. Finally, highly selective etchant (1:1, 
HCI:H3PO4) was used to remove the InP substrate. Fig. 3.15 shows the photonic-wire 
ring laser fabricated with 4.5 ~tm ring diameter and 0.4 ~ n  waveguide width (the 
waveguide thickness is 0.19 psn). 27 

The photonic-wire ring lasers fabricated were optically pumped with a 514 nm ar- 
gon-ion laser modulated with 1% duty cycle in a vacuum chamber at 85 K. The pump 
light was focused to a spot size coveting the whole ring laser cavity. The scattered 
light from the laser structure was collected by an objective lens. The emission spec- 
trum is detected and measured with a spectrometer, a liquid-nitrogen-cooled germa- 
nium detector, and a lock-in amplifier. The typical emission spectra of the photonic- 
wire laser with a waveguide width of 0.4 pm are shown in Fig. 3.16, indicating lasing 

P~ 

p--4 

1 0  
1 2  

9 

8 3/ 
0.0 0.1 0.2 0.3 0.4 

P u m p  p o w e r  (roW) 
4x .~, 

\ £  
. ~  ~=°'~.'""" o , o o 

1 3 0 0  1400 1500 

wavelength (nm) 

Fig. 3.16. Spectra of a 4,5 ~m photonic-wire ring laser with 0.40m waveguide. The solid line 
and the dashed line were measured above 1.5 threshold and near threshold, respectively. Inset 
shows the measured lasing power as a function of peak pump power. 
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at 1403 nm. The dashed curve is the spectrum at around threshold where the peak 
pump power absorbed by the laser is approximately 95 mW. The iasing power as a 
function the peak pump power is shown in the inset of  Fig. 3.16. Its spectral linewidth 
at 1.5 threshold was measured to be about 0.5 nm with a spectrum analyzer resolution 
of 0.1 nm. The cavity volume of  this laser is approximately 0.27 lum 3, which was 
among the smallest semiconductor laser cavity ever realized. If the ring diameter is 
reduced further, it is possible to achieve a cavity volume of lass than 0.1 /am 3 at an 
optical waveguide of 1.5 lum wavelength. 

In order to obtain light output, we have fabricated a waveguide adjacent to the ring 
laser as shown in Fig. 3.17(a), where the ring laser has 10 lam diameter and 0.45 pm 
width. Output light at the ends of  the U-shape waveguide is imaged using a infrared 
camera as shown in Fig. 3.17(b). We can see the two bright light spots scattered from 
the two ends of  the U-shape waveguide. 28 

(a) (b) 
Fig. 3.17. (a) Scanning electron microscope image of a waveguide coupled photonic-wire ring 
laser fabricated with a 10-p.m ring diameter. (b) The infrared image of a photonic-wire ring 
laser at 1.5 threshold pump power. We can see a faint ring pattern and two bright emitting spots 
at the ends of the U-shape waveguide. 

Another type of photonic-wire lasers can be realized by using a linear cavity as de- 
picted in Fig. 3.18. In order to realize a microcavity cavity, strong feedback can be 
achieved by using a 1-D photonic structures to form the cavity mirrors. The I-D pho- 
tonic bandgap structure is formed by etching tiny periodic holes through a 0.8 ~tm 

• " ) 9  thick and 0.45 ~tm wide beam of semiconductor suspended in air.- 
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Fig. 3.18. Scanning electron microscope image of a linear photonic wire cavity. 

3.6 Smallest Possible Dielectric Cavity? 

The smallest dielectric microcavity may be realized with above-discussed dielectric 
channel waveguide having a length forming a half-wavelength microcavity. This 
length, denoted as ?',, would be dependent on the velocity of propagation for the 

guided mode. As discussed above, in order to achieve a large fl value, it is desirable 

to have a ~  0.72/~/-n~ 2 -n2s and b= a / 2 .  To form a half-wavelength microcavity, 

we must have?,  = 2/(2ne~), where n#  is the propagating constant for the guided 

mode. For ng=3 .4 ,  n , = l ,  and 2 = l . 5 # m w e  will have a=0.323#mand 

b=  0.162#m. In this case, the propagation constant is given by: n4r = 1.64. The 

physical volume of the cavity would then be given by 
V~P~ y'jCa' = 0.7x0.3523/(2n¢¢(n 2 -n2 ) ) .  The sinusoidal variation of the mode will give 

a mode width approximately equal to half the physical width (i.e. half its zero point 
width). It turns out that the dielectric guided mode will have sinusoidal variation 
along both side "a" and "b". There will also be sinusoidal field amplitude variation 
along the cavity length. Hence the mode volume is given approximately by the cavity 

, 3 ~ H2 volume multiply by (+)3 giving vm°d~a, = 0.7X0.352 / (16nf(n-  x -- , ) ) .  The smallest 

possible microcavity, it turns out, is achieved with a=0 .323#m,  b=0.162#m,  

?' = 0.457#m, and Vm°d~ =c~, ,  0-00298# m3 (This value is close to that of a cavity 

formed with a cubic half-wavelength box for which: 
v mod~ ~ 3,  (±)3 ~ 0.00134#m 3). This is close to the metallic cavity case with 

filled with a medium with a refractive index of 3.4 for which we 
have V~Y,~ ¢ =0.0035Mm 3 . Note that we have assumed the "cavity mirrors" to be 

formed by dielectric-air interfaces, which are of course not very highly reflecting. The 
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mirror reflectivity or the cavity Q can be increased by using photonic-bandgap struc- 
tures or dielectric coatings to form mirrors. In that case, the effective cavity size will 
be larger. Another way to achieve high cavity Q is to form a photonic-wire ring cavity 
as described above. The smallest ring cavity that can be achieved for 
X = 1.5/tin (withng = 3.4, n, = 1), is with a ring diameter of d = 1/am as radiation 

loss will become dominating at smaller than lpm diameter. Taking the above pa- 

rameter for the ring waveguide dimensions gives a waveguide mode area of 

A,,Od, = abx(X2)2 = ~_x(X2)2 ~ (o.7~, 2~)2 x(~-) 2 (note the (½)2 to covert physical waveguide 

area to mode area). This gives the smallest ring cavity mode volume of 
V~navode __TTt., ] ~mode =O.041/.tm 3 

- -  ~ ~ ~ a v e g a i d e  

3.7 Summary: The Emergence of Nanophotonic Devices and Systems 

From the discussion in this chapter, we see that the use of low-dimensional photonic 
structures, microcavity structures, and photonic bandgap structures can allow us to 
realize high-efficiency photonic devices with much smaller physical sizes than the 
current devices. These devices have critical device dimensions smaller than 
0.5pro and we may refer to them as nanophotonic devices or as sub-wavelength scale 

devices. We believe that the combined use of low-dimensional photonic and elec- 
tronic structures will allow us to realize functional photonic devices and systems that 
may have much lower operating power and faster modulation than those of current 
devices and may be advantages in certain applications such as that require complex 
transformation of optical signals. This technology may eventually allow us to realize 
some types of optical computer or digital optical signal processing system on a chip. 
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Cavi ty  Q E D  - where 's  the  Q? 
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Abstract. We discuss recent experiments in cavity QED with strongly coupled 
single atoms, studied one at a time, in real time. Particular emphasis is placed on 
defining what is, and is not "quantum" about particular parameter regimes of the 
system. 

1 Cavity QED: why use single atoms? 

The quest to create and explore interesting quantum states has been one of 
the primary driving forces in experimental efforts in cavity quantum electro- 
dynamics (QED). A rich array of quantum effects have been predicted theo- 
retically over the last 35 years, since the first work by Jaynes and Cummings 
(1963), but conditions in which they can be experimentally observed have 
proved difficult to achieve: to realize the simple Jaynes-Cummings Hamilto- 
nian we are required to be dealing with single quanta, and be in the regime 
of explicit strong coupling for which the coherent evolution rate of these sin- 
gle quanta dominates any dissipation in the system. That is, we require 
go > /~ - max[F,T-1], where go is the rate of coherent, reversible, evolu- 
tion, T is the interaction time and F is the set of decoherence rates for the 
system. 

Additionally, to be able to experimentally probe and manipulate a sin- 
gle, strongly coupled atom the "optical information" per atomic transit (to 
be defined in Section 3) must be large, so that a meaningful signal can be 
extracted from a single atom in real-time. While many quantum optics experi- 
ments have been carried out at the single atom level (Thompson, 1992; Brune, 
1996; Childs, 1996; Walther 1998a,b), the desired combination of strong cou- 
pling and high-information has only recently been realized, using laser-cooled 
atoms in cavity QED (Mabuchi, 1996a; Hood, 1998). 

In contrast, most experiments in cavity QED (and all in semiconductor 
microcavities) have been in the "weak coupling" regime, for which the semi- 
classical Maxwell-Bloch equations describe the structural properties (eigen- 
structure) of the coupled system equally well as the full quantum master 
equation. That is, both theories predict the same level structure for the cou- 
pled atom-cavity "molecule". In this regime quantum effects are relegated to 
remain generally small perturbations to the system dynamics such as the non- 
classical noise fluctuations of a squeezed output cavity field. Examples of the 
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weak coupling regime include a laser well above threshold, an optical para- 
metric oscillator (OPO), and cavity QED with an ensemble of individually 
weakly-coupled atoms. 

When discussing quantum effects in microcavities and in cavity QED it 
therefore becomes crucial to be able to parametrize in which of these regimes 
a given experiment falls, how the simple one-atom Hamiltonian is correctly 
extended to the case of multiple atoms or emitters, and in what instances 
the collective coupling of many atoms (each weakly coupled) will still give 
rise to interesting quantum phenomena. After a brief review of the one-atom 
cavity QED theory in Section 2.1, this parametrization will be developed in 
Sections 2.2 and 2.3. 

Experimentally, our desire to achieve explicit strong coupling of single 
atoms has driven us to change tack experimentally, moving from thermal 
beams as our atom source to laser-cooled trapped atoms, allowing us to work 
with single atoms, one at a time, in real time. Results from these single-atom 
experiments will be discussed in Section 3 below. 

2 T h e o r y  

2.1 Single-atom theory 

We initially consider the ideal cavity QED system of a single atom (in this 
case cesium) coupled to the TEMo0 longitudinal mode of a high finesse op- 
tical cavity, shown schematically in Fig. 1, with curved mirrors providing 
transverse confinement of the mode. The coherent atom-field coupling rate is 
given by 

(1) 
go = d 2EoVm' 

where d is the atomic dipole matrix element and ~v the transition frequency. 
By making the cavity mode volume Vm small, the magnitude of go can be 
increased. The rate of dissipation is set by 7±, the atomic dipole decay rate 
and a, the rate of decay of the cavity field. It should be noted that photon 
decay via a does not necessarily lead to decoherence in the system, as these 
output photons can be measured, processed, or even used as the input to 
another cavity system, maintaining coherences with the atom-cavity (Cirac, 
1997; van Enk, 1997; Mabuchi, 1996b). Finally, looking ahead to the exper- 
iments of Section 3 with cold atoms we introduce the transit time T of an 
atom through the cavity mode, and require for explicit strong coupling that 
go > ('Y±, a, T- i ) .  

In the limit of negligible dissipation, the system is described by the Jaynes- 
Cummings Hamiltonian, 

= h ~ t ~  + hw~- + hgo(a~+ + &t~_), H (2) 
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Fig. 1. Schematic: Single-atom cavity QED. 

where (6, 6 t) are the field annihilation and creation operators, (b+, ~_) the 
atomic raising and lowering operators (and hence &~ the atomic inversion), w 
the coincident frequency of the atomic transition and cavity field. This Hamil- 
tonian can be simply diagonalized at n system excitations to find eigenstates 
[±) = 1/v~(Ig,  n) ± ]e, n - 1)), with (g, e) here denoting the atomic ground 
and excited states. These states represent the atom and cavity equally sharing 
an excitation, and their corresponding energy levels are shifted by ±v~hg0. 

In the presence of dissipation and allowing for detunings, the Jaynes Cum- 
mings theory is extended to give a set of Heisenberg equations of motion for 
the system operators: 

= -a(1  + i 0 )6  + g0&- + ~e -i(~p-~°)t (3) 

~r_ = -~/±(1 + i A ) a _  + go6az (4) 

= - 11( z + 1) - 2go(6t _ + 6a+)  (5) 

Here ~ is a driving field of frequency Wp, 0 = (Wc - w o ) / a  is the cavity de- 
tuning and A = (w. -w0)/~/ll the atomic detuning from a reference frequency 
wo which defines the rotating frame for these equations. 

In general these operator equations can only be solved by numerical in- 
tegration; however, in the very restricted case of weak excitation (parama- 
trization of what defines "weak" will be discussed in Section 2.3), we can 
solve for the system eigenvalues simply by noting that there is never more 
than one excitation in the system, so that (6&~) = -(6) and (~z) = -1,  
and the semiclassical Maxwell-Bloch equations are recovered. That is, for 
measurements probing the structure of the system (such as measurement of 
transmission or fluorescence spectra), a semiclassical approximation is valid 
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for weak excitation, and we therefore only expect to be able to distinguish 
intrinsically quantum effects in these structural measurements at higher ex- 
citation strengths. 

That a semiclassical formalism correctly predicts the atom-cavity level 
structure for weak driving fields should not be taken as a statement that the 
system contains no interesting quantum mechanics: studying the dynamics 
of a weakly driven, strongly coupled system reveals nonclassicality, such as 
photon antibunching of the output cavity field (Rempe,1991). 

When small amounts of dissipation are included, we note that by varying 
the cavity parameters a and go, the response of the atom-cavity system to 
a probe field can be changed qualitatively. For example, if the cavity decay 

is large, we find that the atom and cavity retain their distinct identities, 
with decay rates modified by their coupling. In particular, we can define a 
"I-D atom" regime by a > g~/a > 7, in which the atomic decay to the cavity 
mode is at rate g2/a and we have an effectively "I-D atom" interacting pref- 
erentially with the cavity mode (Turchette, 1995a). In one experiment in this 
regime, this enhancement corresponds to a Purcell factor of 0.67 (Turchette, 
1995b). Other cavity geometries can also lead to an enhanced Purcell factor 
(Heinzen, 1987; Morin, 1994; Childs, 1996). Note also that since the enhanced 
atomic linewidth 7 + g~/a is less than a, the transmission spectrum is a two- 
peaked structure (the empty-cavity Lorentzian with an "absorption dip" of 
the enhanced atomic linewidth superposed). 

From the perspective of observing strongly quantum mechanical effects, a 
more interesting regime is that of explicit strong coupling, defined by go >> 
(to, 7). In this limit the atom-cavity must be considered as a composite cou- 
pled system, with structure and dynamics approaching those predicted by the 
Jaynes-Cummings Hamiltonian. For weak excitation, the familiar vacuum- 
Rabi spectrum is observed in transmission, while for stronger driving fields 
the nonlinear response follows from the higher-lying states of the Jaynes- 
Cummings ladder, directly observed in the microwave domain of cavity QED 
(Brune, 1996) and reflected in nonlinear transmission measurements in opti- 
cal cavity QED (Hood, 1998; Mabuchi, 1998a). 

2.2 M a n y  A t o m  Theo ry  

Returning to the case of a lossless interaction, the extension of the Jaynes- 
Cummings ladder of states to the case of N atoms is summarized in Figure 
2 (Tavis and Cummings, 1968; Varada, 1987), where the level structure of 
the atom-cavity system is plotted as a function of the number of interacting 
atoms. For one atom the structure is the familiar Jaynes-Cummings ladder, 
with the n-excitation levels split by ±hg0v/-~ in energy. 

Moving to larger atom numbers (N), we notice that the magnitude of the 
vacuum-Rabi splitting scales as v ~ ,  and are hence led to define an effective 
coupling strength gell = go vf~. Making this identification suggests that N 
atoms might act as one effective atom of coupling strength g~lf, following 
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Fig. 2. Energy eigenvalues of the atom-cavity system as a function of number of ex- 
citations, n, and number of intracavity atoms, N. In the shaded region semiclassical 
Maxwell-Bloch theory correctly predicts these eigenvalues. 

a Jaynes-Cummings Hamiltonian. Looking more closely at the higher-lying 
excitations shows that  this is clearly not the case. The 2-excitation splitting 
is +hgox/4N - 2, which for N > >  1 tends to the energy eigenvalues expected 
for classical coupled oscillators, =h2hge/f. 

In the limit of large atom number N > >  1, it therefore follows that  
semiclassical theory yields the correct values for the structure of the system 
irrespective of drive strength. Additionally, the quantum and semiclassical 
descriptions only deviate for n _> 2 excitations, so it should not be surprising 
that  semiclassical theory is also valid in the regime of weak excitation, as was 
already mentioned. 
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2.3 D e l i n e a t i n g  p a r a m e t e r  r eg ions :  C r i t i c a l  a t o m  a n d  photon  
n u m b e r s  

To bet ter  parametrize exactly where semiclassical theory is valid we intro- 
duce two dimensionless parameters describing the atom-cavity: the critical 
atom number, No = (2~7±)/g02 and critical photon number no = 7~/2g~ ; 
the number of quanta (atoms or photons) required to significantly alter the 
atom-cavity response. Most quantum systems have large critical parameters,  
for example a typical laser has a threshold photon number x / ~  -~ 103 - 104, 
indicating that  adding or removing one photon has a negligible effect. Simi- 
larly, for cavity QED systems with large critical atom numbers, many atoms 
are required to have an effect on the intracavity light intensity, and accord- 
ingly the effect of a single atom is small. In these situations, the equations 
governing the system can be expanded in the small parameters (no 1, No1),  
and the description of the system reduces again to a semiclassical predic- 
tion of the structure, with quantum noise fluctuations about  these values 
(Carmichael, 1993). Note that  this expansion is valid for any field strength, 
and provides the more precise definition of the semiclassical regime, that  is 
(no, No) > >  1. 

As the critical parameters are reduced, we move toward a regime where 
individual quanta have a profound effect on the system, so the semiclassical 
approximation above is no longer valid. We can expect to see uniquely quan- 
tum effects appearing in the system structure. Our experiments in optical 
cavity QED have marked a steady progression from the semiclassical to the 
quantum regime: from (no, No) -~ 10,000 in 1981 to our latest experiments 
with (no, No) ~ 0.001. 

In the intermediate regime of (no, No) "" 1 there is some disparity be- 
tween the quantum and semiclassical theories; however, even for one exper- 
iment with (no,No)  = (0.02,0.9), this difference could not be resolved ex- 
perimentally (Turchette, 1995a). In contrast,  for systems with small  critical 
parameters (no, No) < < 1, marked differences between the theories can read- 
ily be observed. One experiment with (no,No) = (0.0002,0.015), described 
in Section 3, clearly demonstrates such a difference (Hood, 1998). 

Finally, we note that the "weak" excitation regime, for which the system 
response is linear and a semiclassical approximation is valid, can now be 
parametrized by reference to the saturation photon number, with "weak- 
field" meaning n < <  no. Note that  for our current parameters of no -~ 10 -4, 
we are not experimentally in the limit of weak excitation, as field strengths 
of 10 -2 < n < 1 are required for acceptable signal-to-noise ratio. 

2.4 A d d i t i o n a l  considerations with  distributions of  atoms 

In cavity QED experiments which use a thermal atomic beam as an atom 
source, there is by nature a spatial distribution of atoms within the finite 
cavity mode, and a temporal variation of this distribution. Although these 
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atoms may be collectively strongly coupled in the sense of gel/  = gov r~  
being large (Thompson, 1992; Childs, 1996), quantum effects are made dif- 
ficult to observe by the presence of many atoms as discussed in Section 2.2, 
even when the effective atom number in the cavity mode is less than one. 
In addition to the degradation in "quantumness" when moving from single 
atoms to N atoms, if the distribution of atoms varies spatially and temporally 
there are additional complications. In particular, if ¢ ( r )  is the mode func- 

tion of the cavity field, then the effective atom number Ne/:  = ~-~N= 1 I¢il 2 
gives rise to effective coupling gem = go ~ for the single photon ex- 
citation, however for excitations of 2 photons the splitting is modified to 
+ h g o ~ / 4 N e / / -  2 M / N e / /  where M -- ~-~N 1 I¢il 4 (Thompson, 1998). Tha t  
is, various atomic distributions of the same Nef /  will each produce different 
structure in the nonlinear spectrum. 

Also, temporal  variations in the atomic distribution lead to a time varia- 
tion of ge/ / ,  and a resulting averaging of output  spectra over the experimental 
detection time. Intrinsic to thermal beams as an atom source, this effect has 
led to the inability of optical cavity QED experiments to directly and un- 
ambiguously resolve the higher-lying states of the Jaynes-Cummings ladder 
(Thompson, 1998), and has been our principal motivation in moving to laser 
cooling as a source of single atoms. 

3 Experiments 

3.1 C o l d  a t o m s  in  c a v i t y  Q E D  - t h e  s i n g l e  a t o m  s o u r c e  

Over the last few years our group has pioneered the use of laser-cooled atoms 
in cavity QED (Mabuchi, 1996a ; Hood, 1998), enabling experiments involv- 
ing single atoms, one at a time. Previous experiments using atomic beams 
required averaging over many atom transits to extract  any useful data. More 
quantitatively, the optical information (Kimble,1997) (the number of photons 
providing our signal) obtained for a single atom traversing the cavity in time 
T is given by 

~02T I = ---~--,fl = m a x ( ~ , % T - 1 ) ,  (6) 

and our parameters yield I _ 540007r, compared to I -~ 7r for atomic beam 
experiments. This vast increase in signal allows for the real-time monitoring 
and manipulation of single atoms as they traverse the cavity mode. It has 
been shown that  this measurement strategy can in fact approach the standard 
quantum limit for the measurement of atomic position, i.e., the point at which 
we extract  the maximum amount of information allowed by the principles of 
quantum mechanics (Mabuchi, 1998b). 

Our experimental procedure is as follows: a cloud of -~ 104 cesium atoms 
is collected in a magneto-optical trap (MOT), situated 5mm above the cavity 
mode. The MOT is then switched off, and the atoms allowed to fall under 
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gravity, with collimation by the narrow gap between the cavity mirrors ensur- 
ing that few atoms pass through the cavity mode. Figure 3 shows the cloud of 
atoms 35ms after the MOT is switched off, falling toward the cavity mirrors. 

Fig. 3. A cloud of cesium atoms falling to the cavity, 35ms after the MOT is 
switched off. 

3.2 Expe r imen t s  with explicit s t rong coupling 

The cavity for these experiments, of length 10.1#m, is comprised of two 10cm 
radius of curvature mirrors of transmission ~- 16 parts per million, giving a 
finesse of 180,000 and leading to the set of parameters (go, ~, 7±, T - l ) ~  27r = 
(120, 40, 2.6, 0.002)MHz, where the transit time T through the cavity waist of 
15#m is T ~_ 75#s. The resulting critical parameters (no, No) = (0.0002, 0.015) 
put us clearly in the regime of explicit strong coupling for a single atom and 
photon. In these experiments we wish to investigate the quantum nature of 
the system. 

We continuously probe transmission of the atom-cavity system as cold 
atoms fall through the cavity mode one by one, with intracavity field strengths 
corresponding to an energy of -- 1 photon on average. The strong atom- 
cavity coupling go gives rise to  a dressing of the system eigenstates and a 
corresponding splitting in the energy levels. For a single, optimally coupled 
atom the transmission spectrum (solid curve, Figure 4(c)) is similar to the 
familiar two-peaked vacuum-Rabi spectrum, but is modified by our drive 
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strength of n > >  no. Optimal coupling is only achieved when the atom 
is at the point of maximum field strength (at the center of the Gaussian 
cavity mode). Thus as an atom falls through the cavity the coupling evolves 
from g = 0, with an empty-cavity Lorentzian transmission spectrum (dashed 
curve, Figure 4(c)) to g = go then back to g = 0. If the atom does not pass 
close to an antinode of the cavity standing-wave, a smaller gm~= < go will be 
achieved. 

c: 
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.v, ,~ 
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o 1.0 
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i . . . . . . . . . . . . .  
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-:I /1' 51 ; I  I 

iit 
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Probe Detuning (MHz) 

Time (ms) 

Fig. 4. Transmission for each of two probe beams simultaneously illuminating the 
atom-cavity as a function of time for a single atom traversing the cavity mode. For 
(a) the probe detuning is -20 MHz, for (b) -100 MHz. The change in the atom-cavity 
spectrum which gives rise to these time traces is shown in (c). For these traces the 
atomic and cavity resonances are coincident. 

For an atom traversing the cavity mode (in _~ 75#s) the position-dependent 
coupling gives rise to a time-dependent probe transmission (Rempe,1995; Do- 
herty 1997). For two probe fields of fixed detuning (indicated by the arrow 
positions of Figure 4(c)) simultaneously illuminating the atom-cavity system 
and being detected in transmission with heterodyne detection, the real-time 
atom-cavity transmission is shown in Figure 4(a,b). Close to resonance (Fig- 
ure 4(a)), transmission drops as an atom enters the cavity and the spectrum 
shifts from the empty-cavity Lorentzian response to the vacuum-Rabi spec- 
trum. Transmission regularly drops by a factor of 100 at this detuning. For 



307 

the same atom during the same transit but for a probe of detuning -g0 (Fig- 
ure 4(b)), the transmission correspondingly rises. For the data of Figure 4, 
the two probe fields are applied simultaneously, leading to a fundamental de- 
crease in signal to noise over single-probe measurements due to the tradeoff 
between reduction in shot noise and saturation of the atom-cavity response 
(Hood, 1998). Detection is by balanced heterodyne at 100kHz bandwidth, 
with the demodulated output digitized at 500ks/s. 

By recording atom transits such as those of Figure 4, the entire transmis- 
sion spectrum can be mapped out (Hood, 1998), but here we wish to focus 
on exploring more explicitly the quantum nature of the system in a strongly 
nonlinear regime. To do this we record resonant transits (as in Figure 4(a)) 
as the intracavity photon number is increased, to map out the saturation 
behavior of the system. A quantum system respecting a Jaynes-Cummings 
ladder of states is predicted to saturate differently than the corresponding 
semiclassical system, due to the different structure for high-lying excitations. 
For our parameters the predictions differ by an order of magnitude, with 
the semiclassical case predicting bistability. The data of (Hood, 1998) shows 
strong agreement with the quantum master equation calculation, confirming 
the underlying quantum nature of the atom-field coupling and our ability to 
access it experimentally. 

Beyond simply measuring strong coupling, one experiment in progress in 
our group is exploiting it to trap single atoms using the vacuum-Rabi splitting 
(Haroche, 1991; Doherty, 1998). The lower dressed state of the atom-cavity 
system (with one photon excitation) has an energy minimum at the center 
of the cavity mode, forming a bound state of atom and cavity sharing a 
photon. The spatial dependence of the cavity mode (Gaussian transverse 
distribution, standing-wave along the cavity axis) therefore creates a series 
of trapping pseudo-potential wells for a red-detuned probe field (for times 
>> a-1 as photons enter and exit the cavity) of depth hgop_ where p_ is 
the occupation probability of the lower dressed state. For our parameters this 
gives a depth of ___ 7mK, so with an initial atomic temperature of 15mK and 
a fall of only 2inm to the cavity, single atoms have low enough energy to be 
confined in this bound state. To date trap times of up to 300/~s have been 
observed, a 4-fold increase over the freefall transit time. 

4 C o n c l u s i o n  a n d  P r o s p e c t s  

The ability to measure and manipulate strongly coupled single atoms one 
by one has tremendous possibilities, both from a perspective of being able 
to experimentally explore fundamental quantum mechanics, and also for its 
potential application to the fabrication of quantum devices for quantum 
computing (Pellizzari, 1995; Turchette, 1995b), quantum state preparation 
(Parkins, 1993; Law, 1997), and quantum communications (Cirac, 1997; van 
Enk, 1997). For each of these endeavors a critical first step has been to demon- 



308 

strate the intrinsic quantum behavior of the system, stemming from the very 
simple underlying Jaynes-Cummings Hamiltonian governing the system: that 
is, demonstrating the "Q" in cavity QED. 

In the world of solid-state devices and microcavity physics, the underlying 
structure is, as we have seen in other lectures in these proceedings, a far more 
complex and subtle thing. With the eventual hope of building truly quantum 
solid state devices, this raises several challenges. Firstly, characterization of 
the dissipative rates in the system is in itself difficult, while controlling and re- 
ducing these decoherence mechanisms poses additional technical problems. In 
addition, for explicit strong coupling realization Of genuinely "single-particle" 
couplings within the multi-particle system are required, with coupling rates 
exceeding the dissipative rates for the system. Given the rapid progress to 
date in microcavity physics it seems merely a matter of time until these cur- 
rent challenges are overcome, and the knowledge accumulated and methods 
developed in cavity QED experiments can be utilized to demonstrate some 
"Q" in micro-cavity QED. 

This work has been supported by DARPA via the QUIC Institute admin- 
istered by ARO, by the NSF, and by the ONR. 

References  

1. Brune, M., et. al. (1996); Phys. Rev. Lett 76, 1800. 
2. Carmichael, H. J., (1993); Quantum Statistical Techniques in Quantum Optics, 

Springer. 
3. Childs, J. J., An, K., Otteson, M. S., Dasaxi, R. R., Feld, M. S., (1996); Phys. Rev. 

Lett. 77, 2901. 
4. Cirac, J.I., Zoller, P., Kimble, H. J., Mabuchi, H., (1997); Phys. Rev. Lett 78, 

3221. 
5. Doherty, A. C., Parkins, A. S., Tan, S. M., Walls, D. F., (1997); Phys. Rev. A 56, 

833. 
6. Doherty, A. C., Parkins, A. S., Tan, S. M., Walls, D. F., (1998); Phys. Rev. A 57, 

4804. 
7. vanEnk, S.J., Cirac, J. I., Zoller, P., Kimble, H. J., Mabuchi, H.,(1997); J. Mod 

Opt 44, 1727. 
8. Haroche, S., Brune, M., Raimond, J. M., (1991); Europhys. Lett. 14, 19. 
9. Heinzen, D. J., Childs, J. L., Thomas, J., Feld, M. S., (1987); Phys. Rev. Lett. 58, 

1321. 
10. Hood, C.J., Chapman, M.S., Lynn, T.W., Kimble, H.J., (1998); Phys. Rev. 

Lett. 80, 4157. 
11. Jaynes, E. T., Cummings, F. W. (1963); Proc. IEEE 51, 89. 
12. KimbleH.J., (1997); Phil. Trans. A 355, 2327. 
13. Law, C.K., Kimble, H. J., (1997); Quantum Semiclass. Opt. 44, 2067. 
14. Mabuchi, H., Turchette, Q.A., Chapman, M.S., Kimble, H.J., (1996a); Opt. 

Lett. 21, 1393. 
15. Mabuchi, H., Zoller, P., (1996b); Phys. Rev. Lett. 76, 3108. 
16. Mabuchi, H., Ye, J., Kimble, H. J., (1998a); submitted to Appl. Phys. B. 



309 

17. Mabuchi, H., (1998b); Phys. Rev. A 58, 123. 
18. Morin, S. E., Yu, C. C., Mossberg, T. W., (1994); Phys. Rev. Lett. 73, 1489. 
19. Parkins, A. S., Maxte, P., Zoller, P., Kimble, H. J., (1993); Phys. Rev. Lett. 71, 

3095. 
20. Parkins, A. S., (1995); unpublished notes. 
21. Pellizzari, T., Gaxdiner, S., Cirac, C., and Zoller, P., (1995); Phys. Rev. Lett. 

75, 3788. 
22. Rempe, G., et. al. (1991); Phys. Rev. Lett 67, 1727. 
23. Rempe, G., (1995); Appl. Phys. B60, 233. 
24. Thompson, R. J., Rempe, G., and Kimble, H. J., (1992); Phys. Rev. Lett. 68, 

1132. 
25. Thompson, R. J., Turchette, Q. A., Carnal, O., and Kimble, H. J., (1998); Phys. 

l~ev. A 57, 3084. 
26. Turchette, Q. A., Thompson, R. J., Kimble, H. J., (1995); App. Phys. B 60 S1- 

S10. 
27. Turchette, Q. A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J., (1995); 

Phys. Rev. Lett. 75, 4710. 
28. Vaxada, G. V., Kumax, M. S., Araxwal, G. S., (1987); Opt. Comm 62 328. 
29. Walther, H., (1998a); P. Roy. Soc. A 454, 431. 
30. Walther, H., (1998b); Phys. Scr. T76, 138. 



Quantum Optics in Semiconductors 
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One of the ultimate goals of applied quantum optics is the control of 
light generation at the single photon level. Until recently, the majority of 
quantum optics research concentrated on achieving this goal using atom- 
field interactions where relatively simple theoretical models such as Jaynes- 
Cummings Hamiltonian provide an accurate description of dynamics. In con- 
trast, photon-semiconductor system is inherently more difficult to model pri- 
marily due to the importance of Coulomb interactions. Nevertheless, the un- 
derlying rich physics and the possibility of practical applications in optoelec- 
tronics provides a strong motivation to study quantum optical phenomena in 
semiconductors. 

In this chapter, we will start by a brief review of quantum statistical 
properties of light and introduce a particular nonclassical state which we 
refer to as heralded single photons. We will then discuss methods to realize 
quantum noise suppression and heralded single photons in semiconductors 
using Pauli exclusion and Coulomb interactions. In the last section, we will 
concentrate on quantum statistical effects associated with bound electron- 
hole pairs (i.e. excitons) and briefly discuss their optical signatures. 

1 N o n c l a s s i c a l  s t a t e s  o f  l i g h t  

In the semiclassical theory of light-matter interaction, the electromagnetic 
field is treated as a classical variable that is driven by the mean polarization 
of the medium. In the full-quantum theory on the other hand, the electro- 
magnetic field is quantized independently of the matter field; the electric 
and magnetic fields in this case are operators acting on the Hilbert space 
associated with the electromagnetic field. Despite the drastic difference in 
formulation, the predictions of the semiclassical and quantum theories agree 
in all linear problems or cases which can be explained by first order (single- 
photon) coherence functions [1]. 

On the other hand, the semiclassical and quantum theories predict dras- 
tically different results for the two-photon correlation experiments such as 
the Hanbury-Brown-Twiss (HBT) experiment. The most important quantity 
to measure in this context is the normalized second-order coherence function 
g(2)(r) defined as [1,2] 

g(2)(r) = (l~(-)(t)E(-)( t + r)l~(+)(t + r)l~(+)(t)) 
(l~(-)(t)l~(+)(t)) (l~(-)(t + r)E(+)(t + r)) ' (1) 
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where 

( e 'k-r  E(+)(r,t) = i " • a (t) ( 2 )  

k 

is the positive-frequency component of the electric field operator and/~(- )  = 
(/~(+))t. For a single-mode electromagnetic field, the expression in Eq. (1) 
simplifies to 

<a'(t)a,(t  + r)a( t  + r)a(t)) (3) 
gO)(r) = (at(t)a(t)> (at(t + r)a( t  + r)) 

We now evaluate g(2)(r) for particular quantum states of light, that  are 
of interest. The first case that we consider is the thermal state. The density 
operator for single-mode thermal light is 

hw .---. nhw 
fit = (1 - exp[-k---~] ) )..f, exp[-k--~R ] In)(nl , (4) 

where TR is the temperature of the radiation field mode at frequency w. Since 
there is no nontrivial time-dependence, the second-order correlation function 
may be easily evMuated to find 

= = 2 

In order to see the physics more clearly, it is useful to generalize this 
result to a multimode chaotic light. If we assume that  the state of the field 
is described by the Gaussian distribution of the frequencies ~ in the density 
operator [3], then we can factorize the numerator in (1) and obtain 

g(2)(r) = 1 + IgO)(r)l 2 (6) 

Since Ig(1)(r)l = 1 for any single-mode light, Eq. (5) follows Eq. (6). If the field 
has a Lorentzian spectrum (with width 7), then gO)(r) = 1 + exp[-Tlrl]. If 
the light intensities at two time instants are uncorrelated, we obtain g(2)(r) = 
1; this result follows the definition ofgO)(r) directly. For thermal light, we see 
that within the field correlation time 7-1, the detection of a photon makes a 
second subsequent detection event very likely: This phenomenon is referred 
to as photon bunching and has been demonstrated experimentally in the 
original HBT experiment. 

The bunching effect that we have just obtained for thermal light is a 
signature of the bosonic nature of photons. Alternatively, we will find a similar 
bunching effect for all thermal bosonic fields, including for example ultracold 
sodium-23 and rubidium-87 atoms. Thermal bosons in general and photons 
in particular tend to be noisy with large amplitude fluctuations. 

When we consider a quasi-classical or coherent state of light, the calcu- 
lation of g(2)(r) is particularly simple: we find that  for a single-mode field 
gO)(r) = 1. The same result would also apply to a classical single-mode 
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light; this is not unexpected since we know that  the coherent state is the 
quantum state of light that  most closely resembles a classical field. Photon 
detection events for a coherent state are completely uncorrelated; detection 
of a photon at r = 0 gives us no information regarding the detection time of 
a second photon. The photocount distribution obtained for a coherent state 
is Poissonian, which is another indication of the lack of correlation: if we 
have a coherent state with a mean photon number fi, then the variance in 
the detected photon number will be An 2 = ft. 

Before proceeding, we discuss some of the inequalities satisifed by the 
second order correlation function in classical theory. One can use Cauchy's 
inequality to show that 

g(2) (0~ > 1 (7) class ica lk  ] -  

g(2) (0~ > g(2) (r~ (8) classical~ / -  c lass icalk / 

Both thermal and coherent states of light satisfy 7 and 8. However, the quan- 
tum second-order correlation function g(2)(v) can in general violate both of 
these inequalities. More specifically, it is possible to have 

< 1 , (9 )  

for certain quantum states of light [1,2]. Since these states violate the classical 
inequalities, they are termed nonclassical states of light. We reiterate that  
there are no classical fluctuations that would give Eq. (9). This range of values 
of g(2)(0) implies that  photons are antibunched; that  is detection of a photon 
makes a subsequent detection event less likely. In most cases of interest, the 
second inequality is violated along with the first one, as g(2)(~) __ 1 for all 
finite bandwidth electromagnetic fields. 

It is also important to point out that a nonclassical state satisfying Eq. (9) 
will in general have less intensity noise (smaller photon number fluctuations) 
than the ideal classical coherent light source. The fact that  quantum light 
can be more quiet provides a practical motivation to pursue the generation 
of such states of light. To quantify the relation between the photon number 
fluctuations and the nonclassical nature of light, we can show that  [2] 

fi2 
/ /  d r ( T - I v l ) [ g ( 2 ) ( r ) -  1] , (10) An2 -- fi = T-2 T 

where T is the counting time interval. For the special case of a single-mode 
field, Eq. (10) can be rewritten as 

g(2)(0) = 1 + - -  An~ - fi (11) 

The prototypical example of a purely quantum state of light is the single- 
mode photon number eigenstate with n photons In), for which we obtain 

g(2)(0) n - 1 - < i (i2) 
n 
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It is easy to understand the origin of photon antibunching in a photon num- 
ber eigenstate: The total number of photons is known and the detection of 
one makes it less likely to detect other photons. Particularly, for In) = I1), 
g(2)(0) - 0, as there are no photons left to detect after the first one. In 
contrast, for n >> 1, the antibunching effect is small. On the other hand, for 
all values of n the photon number state has no intensity noise, i.e. An 2 = 0. 
We conclude that  for a single-mode photon-number state, there is practically 
no information on the arrival time of the photons (weak antibunching), even 
though the total number that will eventually be detected is known precisely. 

The ultimate quantum control of photon generation would imply that  a 
single (or a well-defined number) of photons are generated at arbitrarily short 
time intervals, with a deterministic dwell time between successive photon 
generation events. In such a case, one has complete information about the 
total number of photons as well as the generation/detection time of photons. 
Such a heralded single-photon state [4,5] is best characterized by its second- 
order coherence function g(2)(v): heralded single-photon state exhibits strong 
antibunching (g(2)(v) ~ 0) as there is a deterministic dwell-time (T~c) in 
between successive photon detection events. In addition, g(2)(r --- T~c) > 1 
indicating that  at a dwell-time after the first photon detection, the probability 
of detecting a second photon is much more likely than in the case of coherent 
photons. This is clearly a nonclassical state of light with possible applications 
in quantum optoelectronics. 

Within the last 4 years, there have been several proposals for realizing 
such a herlded single-photon state [4-6]. In the following section, we will 
detail a possible implementation in mesoscopic p-i-n junctions that  rely on 
coulomb blockade and quantum confinement effects. 

To conclude this section, we will discuss the g(2) (r~ for fermionic fields ]errn i \  ) 
qualitatively. We can define an analogous two-time second-order coherence 
function for a (spin-polarized) fermionic system with field operator ¢(r, t) as 

(¢ t ( t )¢ t ( t  + T)¢(t + T)¢(t)) (13) (2) 
gf~rmi(r) = (¢ t ( t )¢( t ) ) (¢ t ( t  + r)¢( t  + r)) ' 

where we have suppressed the spatial dependence of the field operator for the 
sake of direct comparison with the photon correlation function, even though 
spatial correlation function is more important in practice. We can consider 

(2) gyermi(V) for fermions with and without repulsive interactions: in both cases 

g~2~)mi(O ) = 0, indicating that fermions are antibunched. For non-interacting 
fermions, the antibunching is purely due to Pauli-exclusion principle and is re- 
ferred to as an exchange hole. The presence of repulsive interactions enhances 
the antibunching; for example even with electrons of opposite spin, we expect 
to see antibunching due to mutual  Coulomb repulsion: this is referred to as 
a Coulomb hole [7]. In either case, we see that fermions are inherently quiet. 

The second-order coherence for fermions that we have discussed gives us a 
clue as to how we can go about generating nonclassical light; more specifically, 
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if we can force photons to follow the fermions that generate them, then we 
could hope to obtain quantum statistical properties for photons that resemble 
those of fermions. This is in a sense the underlying idea behind the devices 
discussed in the following section. 

2 Q u a n t u m  o p t i c s  in  m e s o s c o p i c  s y s t e m s  

In order to control light generation at the single photon level, it is essential 
to manipulate and suppress the quantum noise that accompanies the photon 
generation process. Pump noise is crucial in this context as it ultimately de- 
termines the noise characteristics of the generated light. In this chapter, we 
Concentrate on the problem of sub-Poissonian or quiet light generation from 
semiconductor p-n junctions. Pump noise associated with electron injection 
across the junction in this system can be suppressed by either Coulomb in- 
teractions or phase-space filling. As we shall see, the nature of the generated 
nonclassical light depends to a large extent whether the junction is macro- 
scopic or mesoscopic; in the macroscopic limit we obtain number-squeezed 
light whereas in the mesoscopic limit the generated light can best be de- 
scribed as a regulated single-photon pump or heralded single-photons. 

In the first subsection, we will consider a constant current driven macro- 
scopic junction and discuss the roles of current noise and macroscopic Coulomb 
blockade effect on photon-number squeezing. In the second subsection, we will 
concentrate on mesoscopic junctions and the generation of heralded single 
photons. 

2.1 Quantum noise suppression in macroscopic junctions 

As we have already indicated, pump noise plays a fundamental role in deter- 
mining the noise characteristics of lasers that operate well above threshold 
[8]. Let's consider a p-n junction laser diode where the junction current is pre- 
dominantly due to electrons: we will note that for above-threshold operation 
the stimulated photon emission is the dominant recombination mechanism. 
This in turn implies that practically each electron injected from the n-type 
layer into the p-type layer will recombine by emitting a single laser pho- 
ton. The total number of photons that leave the cavity for long observation 
times will then be necessarily equal to the number of injected electrons. If 
in addition, we have a situation where the stimulated emission rate is much 
faster than the characteristic rates associated with electron injection, the 
photon statistics will closely follow that of injected electrons. Equivalently, 
the low-frequency noise spectrum [8] of electrons and photons will be iden- 
tical. A similar consideration is also valid for light emitting diodes (LED) 
in the bad-cavity limit, where the dominant recombination mechanism is via 
spontaneous emission into a single cavity mode. The Heisenberg-Langevin 
description of the laser dynamics confirm this qualitatitive explanation [8,9]. 
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Since single photons will follow single electrons as we have argued above, 
we need to understand the possible noise suppression mechanisms for the 
electron stream in a p-n junction in order to predict the photon statistics 
of the generated photons. Our primary emphasis should therefore be on the 
current noise in the circuit. It is well known that the current noise in a 
macroscopic conductor under a finite bias is independent of the bias voltage 
and is equal to the Johnson-Nyquist thermal noise. In other words, a good 
resistor does not exhibit partition noise and the observed current noise (due 
to Johnson-Nyquist noise) is much lower than the shot noise level. Recently, 
there has been several attempts to explain this well-known phenomenon using 
microscopic models [10,11]; it appears that the self-feedback provided by the 
Pauli exclusion principle on dissipative electron transport is responsible for 
the current noise suppression. Since Pauli exclusion is not as effective for 
elastic scattering (pure dephasing) processes, it is predicted that shot-noise 
suppression should be dominant only in dissipative resistors [10]. 

The current noise in the circuit that drives the p-n junction should there- 
fore depend on whether or not the total circuit resistance seen by the junction 
is smaller than the differential resistance of the junction. Typically for laser 
diodes, the differential resistance Ra = k T / e I  < 1/2 (where I is the junc- 
tion current and T is the temperature), implying that even with very small 
source resistances, the junction will be effectively driven by a constant-current 
source. As we have argued above, the pump noise of the laser in this case will 
be well below the shot noise level, which in turn implies that the generated 
light field will be sub-Poissonian. This prediction have been confirmed by 
experiments and noise suppression in excess of 10 dB below shot noise has 
been observed [9]. If on the other hand, the junction resistance is larger than 
the source resistance, then the junction will be driven by a constant-voltage 
source: the electron injection across the junction in this case will be random, 
resulting in a shot-noise limited pump noise. The photons generated by a 
constant voltage driven macroscopic junction have Poissonian statistics. 

Suppression of shot noise in semiconductor p-n junction lasers driven by a 
high-impedance constant-current source provides us with the simplest source 
of nonclassical light. The value of the second order correlation function for the 
light generated by such a constant-current driven macroscopic pn junction 
is below but very close to the Poisson limit, indicating that anti-correlation 
between successive photon emission events are very small and that practically 
no information on the photon emission times exist: The anti-correlations only 
become important for a large number of photons. 

The suppression of the driving current shot-noise in a macroscopic con- 
ductor connected to a large resistor is an important factor in the observation 
of the described effects. However, a constant-current source alone does not 
dictate the correlations between successive injection events. To understand 
these correlations, we need to consider the influence of charging effects on 
the individual electron injection across the junction. To this end, we will 
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introduce the concept of Coulomb blockade in the following subsection and 
after that, we will analyze the transition from a "macroscopic regulation" of 
many electrons in the squeezing regime to the strict regulation of individual 
electron injection events in the Coulomb blockade regime [12]. 

2.2 Coulomb blockade of  e lec t ron in jec t ion 

Coulomb interactions and phase-space filling (PSF) are the two primary ef- 
fects that enrich the physics of semiconductors. When the size of the semicon- 
ductor becomes small in all 3 dimensions, both of these effects become more 
prominent. When the size is on the order of 100/~, size quantization or equiv- 
alently PSF is the dominant physical mechanism determining the nonlinear 
response of the material. For semiconductors with dimensions 0.1p - 1#, it 
is the Coulomb interactions that dominate the transport and even optical 
properties; this is the mesoscopic limit or the Coulomb blockade regime [13]. 

Let's consider a n-I-n semiconductor junction where I denotes a wide- 
bandgap undoped semiconductor: when a bias V0 is applied between the 
leads, the electrons will tunnel from the emitter side to the collector. The 
junction can be modelled as having a tunneling resistor Rt and a capacitance 
Cd. The Capacitance is given by 

Cd = e AeH , (14) 
Li 

where e and Li are the dielectric constant and the length of the insulator 
layer, respectively. Ael] is the effective area of the junction. The resistance 
Rt can be written in terms of Cd and the tunneling rate of electrons Ft 

1 
R ,  - ( 1 5 )  

rtCd 

Coulomb blockade regime can be roughly defined as the parameter range 
where the single electron charging energy, given by e2/Cd exceeds all the other 
relevant energy scales, such as the characteristic energy-scale for thermal 
fluctuations (kT) and the broadening arising from the tunneling process itself 
(hFt). The latter requirement can be stated namely as 

h 
Rt > RQ = 2e ~ , (16) 

where RQ is commonly referred to as the quantum unit of resistance [13]. By 
using semiclassical arguments, we can deduce that in the limit 

e 2 
C'-~ >> kT, hl", , (17) 

single electron charging can induce large correlations between successive elec- 
tron injection events. More specifically, electron injection through the barrier 
by tunneling or across the barrier by thermionic emission can be strongly 
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inhibited by an earlier injection event provided that the circuit recovery time 
is long compared to the tunneling time [13]. The last condition is satisifed 
only if 

R, >> n ,  , ( lS)  

where Rs is the (frequency independent) source resistance seen by the junc- 
tion. When Eq. (19) is valid, the junction is said to be driven by a constant 
current source with I "~ Vdc/R~, where Vd¢ is the applied voltage. Physically, 
restoring the missing electron (and hence the pre-injection junction voltage) 
requires a time Ti = e/I,  leading to a dead time between the injection events 
as both tunneling (in the WKB limit) and thermionic emission rates depend 
exponentially on the junction voltage. 

These simple and interesting predictions of the Coulomb blockade the- 
ory for a single constant-current driven mesosocopic junction have not been 
observed experimentally due to the effects of the electromagnetic environ- 
ment, which effectively shunts out the source resistance [14]. Due to these re- 
strictions, the experimental demonstration of Coulomb blockade phenomenon 
was carried out in double-barrier junctions that are of n-I-i-I-n type [15]. In 
these experiments, electrons in the n-type regions are degenerate and the 
capacitances Cd of each junction are approximately equal. Provided that 
e2/Cd >> kT, the electron injection will only occur if the voltage drop 
across the first junction exceeds e/2Cd. Following the electron injection event, 
the energy of the Coulomb island is increased by e2/Cd, while the emitter- 
collector voltage remains fixed due to very short circuit recovery time (con- 
stant voltage operation). The injected electron can only leave by tunneling 
out into the collector region. However, before this happens, injection of an- 
other electron from the emitter is inhibited: the electron injection events 
across the junction are therefore antibunched but not regulated [16]. 

We note that in order to investigate the signatures of Coulomb blockade in 
photon statistics, one should consider p-n or p-i-n type semiconductor junc- 
tions [12,16]. We proceed by first considering charging effects in macroscopic 
p-n junctions. 

2.3 Macroscop ic  Cou lomb  blockade 

In this subsection, we will show that the junction capacitance (Cdep) and the 
operating temperature (T) determine the transition from the macroscopic to 
mesoscopic regime through the ratio r = e 2/(k T Cdep) of the single electron 
charging energy to the characteristic energy of the thermal fluctuations. In 
the macroscopic and high temperature limit (r <<  1), the electron injection 
process is sub-Poissonian with variance given by 1/r. On the other hand, for 
r > 1 (mesoscopic and low temperature limit), the individual injection pro- 
cess is regulated, so that a nonstochastic spike appears in the noise spectrum 
at the single electron charging frequency I /e ,  with a squeezed background 
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noise. We also note that  for measurement times (T,~e~,) short compared to 
the thermionic emission time rte, the injection process is Poissonian, even 
with an ideal constant current source. The relative magnitude of the three 
fundamental time-scMes: ri, r~e, and Tmea~ completely determine the noise 
characteristics of the carrier injection. Once again, provided that  the radia- 
tive recombination process is fast compared to these time scales, the same 
noise properties will be transcribed to the generated light field. 

To illustrate this connection, we consider a p -  i - n A I G a A s  - G a A s  het- 
erojunction driven by an ideal constant current source. The carrier transport 
in such a junction occurs by thermionic emission of electrons from the n-type 
A I G a A s  layer into the p-type G a A s  layer, across an undoped (i) A I G a A s  
section. The rate of thermionic emission of electrons is given by 

~te(t) A e l !  T 2 A* e e (19) 
- e e p[-Z-f - vb ,  2 a)] 

Here, A* is the Richardson's constant [12]. Under ideal constant current op- 
eration ( d I / d t  = 0), the time dependence of the thermionic emission is 
exponential 

= e = p [ - - -  

where 

Tte  ~-- 

t 
r ne(t)] , (20) 

rte 

k T Cdep e 1 e 

e 2 I r I 
(21) 

The time-constant rte as defined in Eq.(22) gives the time-scale over which 
the thermionic emission rate changes appreciably and is termed "thermionic 
emission time". In Eq.(21), ne(t)  denotes the number of thermionically emit- 
ted electrons in time interval (0, t ) .  The e x p [ - r  ne(t)] term can be regarded 
as providing a "feedback mechanism": Emission of an electron results in a 
decrease in the thermionic emission rate and makes a second emission event 
less likely. This feedback is at the heart of Coulomb blockade regulation where 
the decrease in the emission rate is strong enough to strictly block a second 
emission event for another single electron charging time e / I .  It is also the 
physical origin of macroscopic squeezing where the decrease in the emission 
rate is small so that  only the regulation of many electrons is possible. 

We can show analytically that  in the limit of r << 1 (i.e. the macroscopic 
regime), the probability for observing ne electron injection events in an ob- 
servation time Tme~, is [12] 

1 1 fi~. ezp[-fie] e x P [ - 2 ( n e  - fie) 2] (22) P(ne'Trnea")  ~ N ( r ,  fie) ne! 

where fie = T,~e~,I /e  and N(r,  fie) is the normalization factor. If fie r < <  1 
(i.e. vte > >  Tme~8), then the last term in Eq.(23) can be neglected and one 
obtains the usual Poisson distribution with A n e  = V~e ; since the observation 
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t ime is much shorter than rte, we do not expect to see the effects of the 
feedback resulting f rom a decreased thermionic emission rate. If on the other 
hand, tier > >  1 (i.e. rte < <  Tm~a,), then the n~ dependence is predominant ly  
determined by the last te rm (i.e. ne is Gaussian distributed).  The s tandard 
deviation in this limit is 

1 (23) 
v 

Zinc given in Eq.(24) can be considered as a fundamental noise limit for 
macroscopic squeezing in constant-current driven p - i - n heterojunctions. 
Even in the limit r < <  1 where emission or tunneling of a single electron 
creates a very small voltage drop, the combined effect of many  electrons is 
sufficient to control and regulate the electron emission to within several Ane .  
Finally, note tha t  Ane obtained from Eq. (24) does not depend on Tmeas, 
even though fie does. 
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Fig. 1. An~ as a function of the junction area 

To understand the transition from the mesoscopic (r > 1) to macroscopic 
regime, we consider the dependence of A ne on the effective junction area. 
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Figure 1 shows the results of a classical Monte Carlo simulation [12]. For 
the chosen (fixed) measurement time Tmea, = 20 e / I ,  the expectation value 
he of the thermionically emitted electrons is 20. We observe that for very 
large junction areas (7-re > Tr,~a,, or A~yy > 20), the value of A ne is very 
close to the Poisson value of 4.47: In this limit the electron injection events 
have practically no effect on the thermionic emission rate. As a result, for the 
chosen observation time, we have a random point process with a constant 
rate, even though the junction is driven by a perfect constant-current source. 
For junction areas that  give e / I  < v t e  < Tm~,  (1 < A~ll  < 20), in Fig. 1, 
A n~ is approximately proportional to the square root of the area (or Carp) 
and is clearly below the Poisson limit. Finally, for e / I  > rt~ (i.e. A~I] < 1 ), 
A n e decreases very sharply: This is the Coulomb-blockade regime where 
the individual electron injection events become deterministic as the single 
electron charging energy e2/Cdcp exceeds k T .  

The ratio r of the single electron charging energy to the characteristic 
energy of the thermal fluctuations determine the extent of the correlations 
between the injected electrons: In the mesoscopic limit (kTCd~p/e ~ < <  1), 
each electron is aware of the previous one due to the significant change in 
the junction voltage that  the last thermionic emission (or tunneling) event 
created: This is the Coulomb blockade regime discussed above. In the macro- 
scopic limit (kTCd~p/e 2 > >  1), individual thermionic emission events prac- 
tically have no effect on the expected injection time of the next electron. A 
large number of emission events however, do have a combined affect on r~te 
and it is this feedback that keeps the standard deviation below the Poisson 
limit. 

2.4 M e s o s c o p i c  j u n c t i o n s  a n d  C o u l o m b  b l o c k a d e  

Even though there are fundamental problems in the realization of a constant 
current driven submicron-scale single-barrier p-i-n junction, mesoscopic do- 
main provides us unique opportunities for generation of nonclassical light. 

First, we consider a constant-voltage driven mesoscopic P - Ip - i -  In - N 
junction where the undoped small band-gap i-region acts as the active layer 
where radiative recombination of injected electrons and holes take place. The 
capacitance of both P - Ip - i and i - In - N regions are assumed to be small 
enough that  both hole and electron injection across the corresponding layers 
(by either thermionic emission or tunneling) is subject to Coulomb blockade 
effects. Even if the quantum confinement effects are negligible; the electron 
and hole injection into the i-layer in such a junction will be correlated. More 
specifically an electron injection event will increase the energy of the i-layer 
by e2/Ci_i,,_N thereby enhancing the hole injection rate. Since the injection 
of a second electron is prohibited until a hole is injected, we expect to find 
an injection sequence that  consists of alternating charges. It is also clear 
that  if we only consider the electron stream, we will find antibunching due 
to Coulomb blockade. If radiative recombination follows electron and hole 
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injection in a short time-scale, then this antibunching will be transcribed to 
the generated photons. In this case, the generated light source is antibunched; 
however, there is no regulation of the photon emission times. This is an 
example of nonclassical (antibunched) light generation purely due to Coulomb 
interactions. 

If the i-layer of the P - Ip - i - In - N junction is a true quantum 
dot (L < 100/~) with strong quantum confinement effects, then we expect 
to see strong PSF effects. For simplicity, we can consider a junction where 
charging effects are negligible: due to strong quantum confinement, there 
will only be two electron and two hole states that are available for radiative 
recombination at the lowest transition energy of the quantum dot. Even if the 
injection rate is constant, once two electron-hole pairs are injected, further 
injection events are prohibited as there are no available final states due to 
PSF. If one detects only right (or left) hand circularly polarized photons, 
then only a single electron-hole pair state will contribute to emission: such 
a system is clearly analogous to a single atom and the generated photons 
will be antibunched. This is an example of nonclassical (antibunched) light 
generation that is purely due to PSF effects. 

As we have discussed earlier, it is very desirable to go beyond antibunching 
and regulate the generated photon stream. We next consider an ac-voltage 
driven mesoscopic junction that achieves this goal: The energy-band diagram 
of the mesoscopic P - Ip - i - In - N A I G a A s  - G a A s  heterojunction 
that we analyze is illustrated in Figure 2. If the junction voltage ~ (t) is well 
below the built-in potential Vbi (V~i - Vj(t) >>  k T ) ,  the carrier transport 
in such a structure takes place by resonant tunneling of electrons and holes 
through the undoped In and Ip - A I G a A s  barrier  layers, respectively. The 
injected electron-hole pairs then recombine radiatively in the i -  G a A s  layer. 
We assume that the width of the i - G a A s  Coulomb island is small enough 
that the energy separation of the quantized subbands well exceed the single 
electron (hole) charging energy and that resonant tunneling into a single 
conduction (valence) subband need to be considered. The resonant tunneling 
of an electron or a hole is allowed only when the junction voltage is such that 

E f n  -- e2 /2Cni  > Ere, ,e  > E n c  - e2 / 2 Cn i  

and 

EIp  + e~/2Cpi  <_ Eres,h <_ Ep~ + e2 /2Cpi  

( e l ec t rons )  , (24) 

(holes)  . (25) 

Here, Ere, ,e  (Ere , ,h)  is the energy of the electron (hole) resonant subband 
of the i - G a A s  quantum well (or dot); E,c and Ep,  are the energies of the 
conduction and valence bands in the n -  and p -  type layers, respectively; and, 
Ejn and Eyp a r e  the Fermi energies in the corresponding layers. Cni and Cvi 

are the capacitances of the n - in - i and p -  i v - i regions, respectively. The 
energies in Eq. (1) are determined by the applied junction voltage ~ ( t )  = 
Vo+v( t ) ,  where v(t) = 0 (0 < t < T .c /2) ;  and v(t) = A V  (T .c /2  <_ t < T~c = 
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Fig. 2. Energy-band diagram of a mesoscopic P - I p  - i - I ,  - N junction 

f~-I ). The impurity concentrations on both n and p sides should be small 
enough that E l ,  - Eric "* e2 /C , i  and Epv - E I v  ~_ e2/Cpi , since we want to 
be able to turn the tunneling of a particular carrier on and off by applying 
a voltage pulse whose magnitude is on the order of (but larger than) the 
single-charge charging energy. Finally, we assume that the Al  concentrations 
in the two barrier regions are chosen independently so as to guarantee that 
peak electron and hole resonant tunneling occur at (significantly) different 
values of the applied junction voltage. 

We choose the dc-bias voltage (Vo) so that the electron tunneling is res- 
onantly enhanced when v(t) = 0. The applied square voltage pulses (v(t)  = 
AV) enable resonant hole tunneling, while blocking electron tunneling due 
to the violation of the inequality in Eq. (25), i.e. by quantum confinement. A 
second tunneling event of the same carrier during the time interval where the 
junction voltage remains unchanged, is blocked by Coulomb blockade. There- 
fore, only one electron and one hole can tunnel into the i -  GaAs  layer within 
a single cycle of the applied ac-voltage. Assuming that the radiative recombi- 
nation occurs in a time-scale short compared to the period of the ac-voltage, 
a single photon is generated in each cycle with a probability approaching 
unity. If in addition, the heterostructure is embedded in a photonic band-gap 
structure, then the photons are spontaneously emitted predominantly into a 
single mode of the radiation field [4]. 

Figure 3 shows the junction dynamics obtained using the classical Monte- 
Carlo method. The period of the ac-voltage is such that both the electron and 
hole tunneling occurs with very high probability during the time-intervals in 
which they are allowed. The photon emission events follow hole tunneling 
in a very short time interval. We can consider the ratio of the period of 
the photo-emission events to the jitter in the single-photon generation time 
as a quality factor Q for the generated single photon stream. For a source 
with a time-independent generation rate, this ratio is unity (Poisson limit). 
In the proposed device, the quality factor is given by the ratio of Tae to 
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rrad, provided that the peak hole tunneling rate satisfies F,~nn,h > F r a d  • For 
the parameters of Fig. 3, Q = 30. If the temperature is kept low enough 
to avoid secondary tunneling events in a single cycle, one can increase the 
quality factor by increasing Tar • 

The output light field generated by such a junction consists of optical 
pulses that contain one-and-only-one photon. As we have discussed earlier, 
these heralded single photons in a given observation-time window form a 
special class of mult imode number-states: they have well defined number and 
emission time information, which is achieved at the expense of increased 
phase and energy uncertainty [5]. 

To summarize, we have seen that both Coulomb interactions and PSF 
effects in mesoscopic p-i-n junctions offer a wealth of opportunities for the 
generation of nonclassical states of light. Considering the trend in minia- 
turization in optoelectronic devices, one would expect the physics that we 
discussed to become relevant for practical devices in the near future. 

3 T h e  e x c i t o n  b o s e r  

As we have seen, the quantum statistical nature of electrons and holes can 
play a crucial role in determining the nonclassical properties of the generated 
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light. On the other hand, it is well known that under weak optical excitation, 
the absorption and emission spectrum of semiconductors is dominated by 
excitonic features: an exciton is a bound electron-hole pair that  appears due 
to the Coulomb attraction between the electrons and holes. We can define 
the exciton operator as [7] 

C~,k -- Z ~(P)h~-ve-~+p ' (26) 
p 

where ek and ]~k denote electron and hole annihilation operators with wavevec- 
tor k, respectively. Provided that  ~ ( p )  is the spatial Fourier transform of 
the v ' th  eigenstate solution of the Wannier equation, the exciton operator 
Cv,~ diagonalizes the single interacting electron-hole pair Hamiltonian. As 
a result, we expect that  at u]tra-low densities excitons will be the relevant 
quasi-particles describing the optical properties of the semiconductor. It is 
also important to note that  excitons have the remarkable feature of a giant 
oscillator strength, which results in ultra-short radiative recombination life- 
times (_~ 30psee) for quantum-well excitons and large normal-mode splitting 
for cavity-polaritons [17]. 

3.1 E x c i t o n s  as b o s o n s  

Despite their importance in fundamental spectroscopy of semiconductors, 
excitons are of relatively little importance from a device perspective. This 
is predominantly due to the fact that  ideal excitons at low densities do not 
exhibit stimulated photon emission and therefore cannot be used to make 
coherent light sources based on this gain mechanism. This is due to the 
quasi-bosonic nature of low-density excitons: if we calculate the commutation 
relation for C~,k and its Hermitian conjugate, we find [7] 

c.¢,k,] 6 ,.6p,p, - +  hp) , (27)  

P 

where ncv and n@ denote the electron and hole occupancy, respectively. From 
Eq. (28) we observe that  we can treat the exciton annihilation operators C~,k 
as bosonic provided that  the (electron and hole) carrier density N satisfies 

Na d << 1 (28) 

Eq. (29) thereby defines the ultra-low density limit for which the treatment of 
excitons as composite bosons is justified; we will assume that  this condition 
holds in our discussion of excitons. 

The bosonic nature of excitons that  inhibit stimulated photon emission 
could on the other hand allow for condensation of excitons into a single 
state: if it can be realized, such an exciton condensate will correspond to a 
macroscopic polarization that  forms spontaneously, i.e. without an external 
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coherent source. If a macroscopic polarization forms in a semiconductor, co- 
herent light will be generated by spontanoeus emission without any need for 
stimulated photon emission or a cavity mode. 

There has been considerable interest in the realization of exciton BEC 
over the last 20 years and so far two groups have reported experimental 
evidence [18,19]. If one assumes an ideal dissipation-free exciton gas with 
no dynamic screening, one can show that the ground-state of the optically 
excited semiconductor is given by [20] 

I~'~) = I~'~,cs) = ] - I [u (k )  + v ( k ) 4 / ~ j l o  ) , (29) 
k 

where and are subject to the normalization condition I (k)l + 
]v(k)l 2 -- 1, and are determined by variational techniques. In the low density 
limit, one can show that u(k) ~_ 1,Vk and v(k) = Nx/-N-~TI,(k) where gezc is 
the total number of electron-hole pairs in the system. We can also show that 
in this limit 

I~g) _~ ~p[o~C~]lO ) , (30) 

which describes a coherent state of ground-state excitons. One of the fasci- 
nating aspects of exciton condensation problem is that the composite-boson 
density is tunable by the optical excitation strength which in principle al- 
lows us to explore both the low-density limit where one should obtain a BEC 
of excitons and the high density limit where under special circumstances, 
a BCS-type state can form. Both of these limits are governed by the same 
ground-state wavefunction given in Eq. (30). 

Of particular interest in the context of quantum optics is exciton con- 
densation in a QW structure. The signature of BEC in such a structure 
is the generation of bi-directional and all-orders coherent light. Since the 
ground-state of the system is the zero in-plane momentum (k± = 0) state, 
the photons generated by annihilating excitons should conserve the trans- 
verse momentum and propagate along +z direction. The quantum statistics 
of the spontaneously generated light also follow those of excitons, in the 
ultra-low density limit [21]. Even though true condensation is not possible in 
a homogenoeus two-dimensional system, intentional or unintentional (weak) 
exciton trapping in the QW plane will allow for BEC in a (finite) QW system 
[22]. 

A distinguishing feature of QW excitons however is the finite lifetime of 
the ground-state excitons due to radiative recombination. In the presence of 
this dissipation mechanism, a more appopriate description of the condensa- 
tion process would be the analog of a laser or boser, as excitons in this case 
will remain out-of-equilibrium even in steady-state [21]. From a laser perspec- 
tive, the condensation process will require the presence of a gain (or cooling) 
process that can be stimulated by the occupancy of the final state. In the case 
of excitons, electron-hole-phonon coupling provides a natural mechanism for 
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the system to cool down to its ground-state. In the ultra-low density limit, 
quantum Boltzman equations predict that  a macroscopic fraction of excitons 
indeed accumulate in the ground-state, provided that  the cooling rate is at 
least comparable to the dissipation rate [22]. The strength of the bosonic 
enhancement of scattering (i.e. gain) however, strongly depends on the den- 
sity of excitons. The dissipation (or heating mechanism) that  needs to be 
overcome is given by the finite radiative lifetime which strongly restricts the 
observability of exciton condensation. 

As the previous discussion suggests, the stimulated scattering of excitons 
is the crucial process that  should allow for the realization of a nonequilibrium 
condensate, or equivalently an exciton boser. Since an exciton consists of two 
(relatively) weakly coupled fermions, it is important to understand the limits 
in which bosonic enhancement of scattering can be observed. 

3.2 St imulated scattering of composite  bosons  

It is well known that  scattering of identical particles are strongly affected by 
their quantum statistical nature. In the case of electrons interacting with a 
phonon reservoir for example, the scattering rate is reduced by the occupancy 
of the final state, which is a direct signature of the Pauli exclusion principle 
For bosonic particles on the other hand, there is an enhancement of scattering 
by the final-state occupancy, which is termed as stimulated scattering or 
Bose enhancement of scattering. Since we have seen that  excitons in the 
ultra-low density limit can be treated as bosonic particles, we would expect 
similar stimulation effects for exciton scattering. If for example, we consider 
relaxation of an excited excitonic state denoted by Ck into the ground-state 
C0, we obtain a quantum Boltzman equation 

d <  > 
dt - F,¢at, < c t c k  > [1+ < c0tc0 >] , (31) 

where we assume a zero temperature phonon reservoir (fipho,~o,~ = 0) and 
ideal (bosonic) excitons. Even though we expect Eq. (32) to hold for all 
particles that  can be treated as bosons, a natural question to ask in the case of 
excitons is the compatibility of stimulated scattering with the Pauli-exclusion 
of the fermionic particles that  form the composite bosom For example, as the 
composite-boson density increases, we expect the stimulated scattering to be 
suppressed by Pauli exclusion [23]. 

In this subsection, we derive an expression for the statistical enhance- 
ment factor of composite boson scattering that  is valid for all densities. Even 
though we concentrate on electron-hole-pair phonon interaction in the Born- 
Markov limit, our basic result can be used for a large class of composite 
bosons and for arbitrary dimensionality, provided that the Bardeen-Cooper- 
Schrieffer (BCS)-type ground-state of the system is predetermined [20]. 

The starting point of this analysis is the interaction of a specific many- 
body electron-hole state with the phonon reservoir, in the fermion basis. The 
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corresponding interaction Hamiltonian is [23] 

= h + gh_p (q)h +qh ] + (32) 
k,q 

g~-ph (q) and g~-ph (q) are the corresponding electron-phonon and hole-phonon 
interaction coefficients. The spin index and the vector nature of the momenta 
are suppressed for simplicity. The same set of variables could also be used to 
describe electron-hole-phonon system under large magnetic fields. 

We proceed by assuming that the initial many-body electron-hole state 
state can be written as [20] 

= C,Kl  cs) = + (33) 
k 

The final (electronic) state of the scattering process is simply ]~Bcs) = 
l-]~[u(k) + v(k)~thtk]10 > where E p  ]v(P)l 2 = N + 1 is the mean number of 
electron-hole pairs. In the following discussion, we will assume that N >>  1, 
so that the difference between v(p) (u(p)) and ~(p) (fi(p)) is negligible Yp. 

The next step is to obtain the scattering rate in the Born-Markov approx- 
imation using the Fermi's Golden Rule. For simplicity, we will assume that 
the lattice is at zero temperature and only consider the spontaneous phonon 
processes. We then obtain the scattering rate 

W~ = 2~r Z ]g~-ph(q)M(q) + gh-ph(q)M(--q)] 2 6(Win -- Wlin -- We),(34) 
q 

where 

M(q) = ~qo*~(k + 2)u*(k)v(k)[1 - Iv(k + q)121 (35) 
k 

Here, hwi, and hwli,~ denote the the energies of the initial and final many- 
body eigenstates, respectively. Wq is the frequency of the emitted phonon. 
We reiterate that Eq. (35) is derived using the interaction Hamiltonian of 
Eq. (33) and no assumption regarding the bosonic character of electron-hole 
pairs were made. The product u*(k)v(k) is proportional to the electron-hole 
pair wave-function. In the Hartree-Fock approximation, u*(k)v(k) can be de- 
termined from the semiconductor Bloch equation (SBE) for the polarization 
term. As we have already seen, for ultra-low density excitons, this equation 
reduces to the Wannier equation in real space and yields the ls exciton wave- 
function ~Ol,(p). In the high density limit ( N a d / L  d > 1), it is the counterpart 
of superconducting gap equation. In many cases however, Hartree-Fock ap- 
proximation is not valid and the calculation of the pair wave-function would 
require the inclusion of screening and scattering terms. 

The factor [1-Iv(k +q)l 2] in Eq. (36) gives the correction to the electron- 
hole-phonon scattering arising from the fact that the presence of a BCS 
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ground-state with a large number of composite bosons modify the commu- 
tation relation of high-momentum electron-hole pairs as well. To the extent 
that  K >> kr where kF is the Fermi wave-vector, the contribution of this 
term is negligible. If we in addition assume K ~ q >> r/aB, we can also 
neglect the k-dependence of T~(k + ~), provided that  ~ is a Hydrogenic 
wavefunction. In this limit, we obtain 

, q 
M(q) ~ ~(-~) E u*(k)v(k) , (36) 

k 

and 

w ,  = E IG(q)l z .  - - , (37) 
q 

where 

G(q) = ge_ph(q)~a*(2 ) + gh-ph(q)~a*(~-~) (38) 

and 

i = I  u*(k)v(k)l (39) 
k 

The expression for I given in Eq. (40) contains the statistical enhance- 
ment factor for the scattering of a phonon by a many-body composite boson 
(electron-hole pair) system. In the low density limit where v(k) ~- v/-N~l,(k), 
we obtain I cx N for all composite bosons, as expected. In this case (u(k) ... 
1,Vk), bosonic enhancement arises from a constructive interference of the 
contributions from all partially occupied pair states. In the opposite high 
density limit, the qualitative nature of saturation and Pauli blocking of sta- 
tistical enhancement factor strongly depends on the particular BCS-state (i.e. 
the coherence factors u(k), v(k)). Here, only the states around the Fermi level 
for which u*(k)v(k) # 0 contribute to I. Equivalently for this latter case, the 
electron-hole pairs with k << kF have exhausted the phase-space available for 
them (v(k) ~_ 1) and can no longer participate in stimulated scattering. Phys- 
ically, this is due to the fact that  the mean separation of the electron-hole 
pairs is less than their size, which makes the Pauli exclusion dominant. 

Eq. (40) shows that  the stimulated scattering explicitly depends on the 
overlap u*(k)v(k). Therefore it is the coherence between the electron-hole pair 
states that  results in bosonic enhancement. Conversely, if the ground-state 
of the many-body system is an electron-hole plasma state where u* (k)v(k) = 
0,Vk, there is no final-state stimulation at any electron-hole pair density. 
We remark that  even though we assume a BCS-state in our analysis, the 
assumption of a well-defined condensate phase should not be relevant for the 
bosonic enhancement factor. 

Next, we consider the special case of two-dimensional (2D) magnetoex- 
citons. It has been shown that  in the strong magnetic field limit where the 
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magnetic length a0 = V/-ff/eB is much smaller than aB, the magnetoexcitons 
become ideal non-interacting bosons [24,25]. More specifically, Paquet et al. 
[25] have shown that  the single-particle wave-function remains unchanged for 
all occupancies of the lowest exciton-band. For this system we have 

v(k) = v = X/27raZoN/L ~ , (40) 

where L is the transverse size of the 2D structure. The evaluation of the 
stimulated scattering contribution is then straightforward: 

I = N ( 1  27raiN. L 2 ) (41) 

L 2 
The analytical expression given in Eq. (42) is valid for 1 _< N < 2%--~Jo" In 

L 2 the low density limit (N << 2---7~0), magnetoexcitons behave as ideal bosons 
L 2 

( I  ~ N).  The total scattering rate peaks at Nm~= = NM = 4r-~a ° where only 

half of the magnetoexcitons contribute to stimulation. For N > NM, stim- 
ulated scattering rate into the ground-state starts to decrease and goes to 
zero as N --+ 2NM; at this occupancy, all the underlying electron and hole 
fermionic phase-space is exhausted (i.e. the first electron and hole Landau 
levels are full) and it is not possible to create another ground-state magne- 
toexciton. 

We therefore see that  stimulated scattering of excitons can indeed survive 
exciton densities far exceeding the more restrictive ultra-low density limit, 
provided that  the electron-hole pairing continues to exist. As we discussed 
earlier, this stimulated scattering of excitons plays the key role of stimulated 
emission in an exciton laser or boser and hence is of fundamental  importance 
[21]. Of particular interest is the possibility of observing stimulated scattering 
of cavity-polaritons, which could lead to a novel form of coherent light source 
[26]. 
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Abstract : We discuss the recent observation of a strong enhancement of the 
spontaneous emission rate (Purcell effect) for self-assembled InAs/GaAs quantum 
boxes inserted in GaAs-based pillar microcavities or microdisks. 

1 Introduction 

As proposed by Purcell fifty years ago l, the spontaneous emission (SE) rate of a 
dipole can be tailored by using a cavity to modify the dipole-field coupling and the 
density of available photon modes. Cavity Quantum Electrodynamics (CQED) has 
provided a solid theoretical basis as well as a spectacular experimental support to this 
revolutionary concept 2-3, and has been since 1990 a major source of inspiration for the 
research activity on solid-state optical microcavities. An ability to enhance the SE rate 
(Purcell effect) of a solid-state emitter in the weak coupling regime would open major 
novel avenues for physics and engineering, such as the fabrication of high frequency 
and/or high efficiency light-emitting diodes. 

Until very recently, attempts to observe the Purcell effect in solid-state 
microcavities have been somewhat disappointing. High quality planar cavities can be 
produced by layer-by-layer deposition techniques, but such cavities entail only minor 
modifications of the SE rate, as predicted theoretically 4 and observed for rare-earth 
atoms 5, semiconductor quantum wells 6 (QWs) or quantum boxes 7 (QBs) in the weak 
coupling regime. Hopefully, progress in microfabrication has allowed a three- 
dimensional (3D) engineering of the refractive index on the wavelength scale, and the 
fabrication of several kinds of solid-state microcavities providing a strong three- 
dimensional photon confinement. Many of these have been for years good enough to 
generate a potentially strong Purcell effect (see section III), but the lack of an 
appropriate emitter has been a major hindrance to its clear observation. Firstly, most 
available solid-state emitters (bulk semiconductor or QW, rare earth atoms...) are 
indeed spectrally much broader than the resonant modes of these cavities, which 
weakens considerably the magnitude of the Purcell effect. Secondly, non-radiative 
carrier recombination at the microcavity sidewalls may also dominate, for bulk 
material or QWs, the intrinsic modification of the carrier lifetime s. 

Using self-assembled InAs/GaAs QBs drastically changes this state of affairs, due 
to a unique combination of assets 9,m. Firstly, such nanometer-scale QBs support well- 
separated discrete electronic states and exhibit a single narrow emission line ll't2 (<< 
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kT), which permits to exploit the full potentialities of high Q cavities (up to Q-10000 
typically). Standard InAs QBs, emitting in the 0.9-1.11am range depending of their 
size, are also defect-free and display a high radiative quantum yield (77-1). They 
capture and trap charge carriers very efficiently, which prevents their diffusion toward 
non-radiative recombination centers 9'j3. As a result, this ensures that any modification 
of the SE rate observed for QBs in 3D cavities, is assigned to intrinsic cavity effects. 
Finally self-assembled QB arrays also offer practical advantages, such as an easy 
insertion within semiconductor cavities during their epitaxy, and an absorption level 
which is most often low enough to avoid any significant degradation of the cavity 
optical quality ~4. It should be noted however that these various advantages are rather 
fragile. Firstly, a raise of the temperature -above 100K for the shallower QBs- entails 
carrier thermoemission and results to a decrease of 77. Secondly, novel emission lines 
and an overall broadening of the spectrum of single QBs appear under high excitation 
conditions, i.e. when more than one electron-hole pair are injected in the QB, due to 
the strong Coulomb interaction between the trapped carriers 15'~6. These effects 
generate only minor constraints when performing CQED experiments on QBs, but 
might be a more severe impediment to the room-temperature operation of devices 
based on CQED effects on QBs. 

Nevertheless, this unique combination of assets has permitted a very clear 
observation of the Purcell effect in 1997 for InAs QBs embedded in pillar 
microresonators t° and more recently in microdisks. We present in this paper our 
experimental results in section IV, and show that a good quantitative estimate of the 
magnitude of the Purcell effect can be obtained from simple considerations. We 
emphasize in particular the usefulness of an estimate of Purcell's cavity figure of merit 
F t, in this context. However, various expressions can be found for F/, in the litterature, 
which differ by a factor as large as 10. For the sake of clarity Ft, we thus first derive 
explicitly in section II the original expression of Purcell's factor F t, and precise its 
physical meaning. We then evaluate in section III F~, for different 3D microcavities in 
order to compare their respective assets for SE control. We will finally discuss in 
section V potential developpements of these studies, ranging from the fabrication of 
revolutionary single-mode emitters emitting photons one-by-one in a deterministic 
way, to the search of other CQED effects such as strong coupling on single QBs. 

2 Purcell's factor revisited 

2.1 SE in a strongly damped single-mode microcavity 17 

We consider a single localized emitter, initially in its excited state and resonantly 
coupled to a single empty mode of a microcavity. If the cavity were perfect, the 
system would experience a Rabi oscillation at the angular frequency ~2. In practical 
cases, cavity relaxation must be included in order to get a realistic description of the 
SE process in the cavity. It is well known that when the cavity losses are large enough 
(4,Q<o~'Q, where Q is the mode quality factor and to the emitter's angular frequency), 
the oscillatory behavior is lost. In this so-called << weak coupling >> or << strong 
damping >> regime, the evolution of the emitter to its ground state is exponential, as 



333 

when the emitter is in the free space, but occurs at a different rate. In the strong 
damping limit, (£2 << agQ ), the SE is characterized by an exponential decay whose 
rate is given bylT: 

1 _ 4~22Q (1) 

T 60 

This value is to be compared with the SE rate of this emitter when it is imbedded 
in a transparent homogeneous medium of refractive index n: 

1 j2~o3n 
(2) 

~'J~e~ 3 ~  hc3 

where d is the electric dipole of the localized emitter. 
In order to compare both rates, let us introduce some notations and recall the 

expression of the Rabi angular frequency £2 in a general case. Field quantization leads 
to the following expression for the electric field operator for the cavity mode (see Ho 
and Fabre lectures): 

E(7 , t )= i  em~ x f (7)gt( t )+h.c .  (3) 

where h.c. means hermitian conjugate, fi is the photon creation operator and )7 the 

mode spatial function, f is a complex vector which describes the local field 

polarization and relative field amplitude ; it obeys Maxwell equations and is 
normalized so that its norm is unity at the antinode of the electric field. The numerical 
prefactor e,,,,~, which is often named in a somewhat improper way <, maximum field 
per photon ~ can be estimated by expressing that the vacuum-field energy is, for each 

mode, /i co/2 " 

"max where V<,t s = n ( r )  2 li( ) dv (4) 

In this expression, n is the refractive index at the field maximum and V~ the 
effective cavity volume, which describes how efficiently the cavity concentrates the 
electromagnetic field in a restricted space. More precisely, VeM is the volume of an 
hypothetic cavity, defined by Born-Von Karman periodic boundary conditions, which 
would provide the same maximum field per photon than the cavity under study. 

For an electric-dipole transition and within the standard rotating wave 
approximation, the atom-field interaction hamiltonian becomes " 

/ t l i n t = - i E m a x d . ) 7 ( r  e) g)(el d + h.c (5) 
where Ig> and le> design the ground and excited states of the two-level system and 

the position of the localized emitter. For a perfect (lossless) cavity, its Rabi frequency 
would thus be: 

I%x (6, 

Using these expressions, we see that the emitter's SE rate is enhanced (or 
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inhibited) in the cavity with respect to its value for an homogeneous surrounding 
material by a factor : 

3o(z,./.)' a.fq.)' 
Z . . . .  4/l:2V# d 2 

Whereas the first term is only related to cavity properties (Q, V¢~), the second one 
(which is always smaller than 1) depends on the relative field amplitude at the 
emitter's location and on the orientation matching of the transition dipole and electric 
field. In order to find a figure of merit describing the ability of the cavity for SE 
control, it is convenient to consider the SE rate of an ~ ideal >> emitter, whose 
properties allow to maximize the magnitude of the Purcell effect. This ideal emitter 
should be located at a maximum of the electric field, with its dipole aligned with the 
local electric field. This figure of merit takes the form proposed by Purcell fifty years 
ago : 

r_ _ (a) 
~.o~ 4u~V¢ 

Let us finally note that the strong damping condition can be rewritten as : 

1 4f~2Q (o Am,. - - - -  << - -  = Am~. (9) 
r,,,~ m Q 

which shows that the homogeneous emitter's linewidth A¢% is much smaller than the 
linewidth of the cavity mode Amc. As discussed by Ho in his lecture, it is then valid to 
treat the single cavity mode as a continuum, and to apply the Fermi Golden Rule, 
which was the original approach of Purcell 1. We will also detail this method here, in 
order to show that both calculations lead to the same result. This derivation will also 
highlight the role of a detuning between the emitter and the cavity mode. 

2.2 SE rate from the Fermi Golden Rule 

For an electric dipole transition, the Fermi Golden Rule can be written as : 
1 2re < d.~(~,) >2 > 

_ _  h2 p(o)e).< (10) 

where p(m.) the density of photon modes at the emitter's angular frequency me and 
where the averaging of the squared dipolar matrix element is performed over the 
various modes seen by the emitter. 

The insertion of the radiating dipole inside the cavity will change its SE rate in 
three ways : the spectral density of modes, the amplitude of the vacuum field and its 
orientation with respect to the radiating dipole are indeed all modified. We evaluate in 
the following the resulting change of the SE rate for a cavity supporting a single-mode 
(angular frequency c0c, linewidth Amc and quality factor Q=r&/Am¢). In this case, the 
mode density seen by the emitter is given by a normalized Lorentzian : 

2 Am 2 2 2Q (l 1) 
• and p . , v ( m , . ) _ - - _  

p , , , ~ (m)=  ~ A ~ .  " 4 ( m - m , . )  z + A w .  2 r r A ~ .  ~ .  
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whereas the <~ free-space >> mode density can be written as: 
o ) 2 V n  3 

pi~ (~0) = n2c------3_- 3 (12) 

Using a normalization volume V, the field operator for each free-space mode is : 

-~ l h ~ 2 e o n 2 V  
E ( f , t )  = i  g hw e ~ d ( t )  +h.c .  (13) 

where E is a unit vector describing the polarisation of the mode. 
Using the Fermi Golden Rule for both estimates, we can compare the SE rate of 

the emitter in the single-mode cavity to the case of an homogeneous surrounding 
medium " 

¢:  ¢ li(,.)l: (14) 
z~.v - V~ssn_cogdAog<'4(o9_~ 3 2 09~.)2 +AOg, 2 " 1/3 4rcZv<:~, 4(c-0~-o9~.)2 +AOg~ 2 

where ~ d . f ( ~ ) [ /  describes the orientation matching of d and f ( ~ ) ,  and : 

where 1/3 is the averaging factor accounting for the random polarization of free-space 
modes with respect to the dipole. We thus retrieve the enhancement factor given by 
Eq. (8) for an emitter perfectly on resonance with the cavity mode (¢o~ = O~c). Here 
again, Ft, appears as the largest SE rate enhancement which can be induced by the 
cavity. In order to observe the Purcell effect in its full magnitude, our << ideal >> emitter 
should be well matched with the frequency, spatial distribution, and polarisation of the 
mode, and should have an emission line much narrower than the cavity mode. 

The Purcell factor F~, provides a practical means for comparing different types of 
microcavities, as it will be done in the next section. As already stated, one should 
however keep in mind that F t, is a figure of merit for one of the resonant cavity modes 
alone. In order to interpret experimental data on SE rate enhancement, we first have to 
take into account the location, detuning and dipole orientation of the emitter(s). If  it is 
coupled to a continuum of leaky modes (which is usual for solid-state cavities) and/or 
to several confined modes, we will also add the partial SE rates obtained for the 
various modes in order to get the total SE rate of the emitter. 

3 Purcell factor of various 3D solid-state microcavities 

For cavities providing a 3D confinement, it is in general possible to tune Q and V¢ff 
independently. This is a major advantage over planar cavities, for which SE rate 
modifications only depend on the effective cavity length 4 (and emitter location). Since 
1990, many approaches have been used to obtain a 3D photon confinement. Silica 
microspheres 18-19, pillar microresonators 81°'2°28, photonic disks 2932 and wires 33, 1D 
and 2D photonic bandgap (PBG) microcavities 3436, all sustain a discrete set of 
resonant modes and are likely to display the Purcell effect (F l, >>1), provided that a 
<~ sufficiently ideal >> emitter is used. We give in this section a brief overview of this 
quest for high F e semiconductor microcavities. 
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3.1 P i l l a r  m i c r o c a v i t i e s  

Micropillars have received much attention since the first fabrication of vertical cavity 
surface lasers 2°'zl. Their interest for spontaneous emission control has been 
acknowledged as early as 199122. We present in figure 1 a typical micropillar 
fabricated through the reactive ion etching (RIE) of  a GaAs/A1As X-cavity resonant 
around 0.9 [am. A 3D optical confinement is obtained through the combination of the 
waveguiding along the pillar (due to the high refractive index contrast at the 
semiconductor/air interface) and of the longitudinal confinement by the distributed 
Bragg reflectors (DBRs). A good estimate of the energies and field distributions of  the 
resonant modes can be obtained by expressing these as simple linear combinations of  
the guided modes of a GaAs cylinder 24. We can in particular estimate in this 
framework, their effective height (~2A, Jn)  and area (-~;R2/4), where R is the pillar 
radius, Therefore the 1 ~am diameter pillar shown in figure 1 is able to confine light 
within an effective volume as small as - 5(~k,e/n) 3. 
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Fig. 1. Typical c.w. PL spectrum, obtained for a 3 ~tm diameter micropillar containing lnAs 
QBs. The arrows indicate the calculated energies for the resonant modes of the pillar. The noise 
level for this spectrum is hundred times smaller than the background PL from leaky modes. 
Insert : SEM displaying a l~m diameter GaAs/AIAs micropillar. 

The resonant modes of 3D microcavities can be easily studied by micro- 
photoluminescence (mPL), using QB arrays placed in the cavity as a broadband 
internal light source, as shown for micropillars 9'24 as well as PBG microstructures 35. 
These modes contribute to a series of sharp lines in the mPL spectrum (fig 1), which 
allows to measure their energies and Q. Unlike QWs, the insertion of QBs allows to 
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probe the empty cavity Q, since it introduces an absorption loss which is in general 
negligible 14. 

The way Q evolves when the pillar size is reduced is a major issue in the context 
of our study. We show in figure 2 a typical result obtained for the fundamental mode 
on a series of micropillars etched in a high-finesse planar microcavity (Q=5200). For 
large enough pillars, Q takes a constant value, equal to the planar cavity Q. Below a 
certain critical diameter, here 3 ~am, Q decreases 2427"28, which indicates a reduction of 
the escape time of the photons. This trend is due to the increased efficiency of several 
diffusion/diffraction processes which can scatter confined photons out of the pillar. 
We have paid much attention for the present pillars to two usually dominant 
processes: a) unlike previous work 24'25, we etch here the major part of the bottom 
mirror; this reduces the field intensity at the bottom of the pillar and quenches the 
diffraction by the finite aperture of the pillar foot; b) an optimization of the RIE 
process has allowed to improve the smoothness of the semiconductor sidewall, and to 
limit the efficiency of the related scattering process. As a result, our smallest pillars 
(d- 0.8 ~m) retain very large Qs (Q>1000). Considering now F/,, we see that the 
decrease of V,# overcomes the degradation of Q, so that Fp still tends to increase for 
our smallest pillars. We obtain for a llam diameter F~,'s as large as 32, which 
constitutes, to the best of our knowledge, the highest value ever achieved for pillar 
microcavities. 
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Fig. 2. Plot of the cavity quality factor Q (circles) and Purcell factor Fp (triangles) for the 
fundamental mode of GaAs/A1As micropillars as a function of their diameter d. 

In practice, the sensitivity of Q on the sidewall morphology is such that 
reproducibility is still a major subject of concern for pillar diameters below 1.5 lam 
typically. Further improvements of F~, for the pillar geometry are more likely to come 
from novel material combinations than from a further reduction of the pillar diameter. 
In this context, challenging novel opportunities are opened by the selective oxydation 
of AlAs into low-index AIOx 3739. A substitution of GaAs/A[As DBRs by GaAs/AIOx 
ones, drastically reduces the spreading of the confined modes into the DBRs, and 
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allows a three-fold decrease of V~£. Previous studies have also shown that high Q 
values can also be obtained with a small number of DBR periods (e.g. Q-1000 with 4 
periods for both DBRs39). We present in figure 3 some recent results obtained for 
GaAs/AIOx micropillars based on a GaAs )~-cavity (containing InAs QBs) surrounded 
by two four-period DBRs. As shown on the SEM micrograph, our present process 
leads to very rough sidewalls. This explains why we could not observe until now 
Purcell factors larger than 14 in this system, in spite of the record-high Q's (>3000) 
obtained for the largest pillars. Further technological developments should 
nevertherless lead to major improvements in the near future. 
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Fig. 3. Plot of the cavity quality factor Q (circles) and Purcell factor Fj, (triangles) for the 
fundamental mode of GaAs/AIOx micropillars as a function of their diameter d. 

3.2 Microdisks zg3z 

It is well known that semiconductor microdisks support a series of whispering gallery 
modes (WGMs), which are guided by total internal reflection -and tightly confined- 
at the lateral edge of the disk. Microdisks as shown in figure 4 are usually fabricated 
using a combination of RIE, which defines a vertical GaAs/AIGaAs cylinder, and of a 
selective wet chemical etching which forms the disk pedestal. Compared to the pillars, 
for which the resonant modes are partially delocalized in the DBRs and all over the 
pillar area, this geometry provides a more efficient 3D confinement. For a small radius 
GaAs disk (~/n< R <20 3./n), the effective area of the lowest radial quantum number 
WGM is approximately given by 0.86 ~.2(R/~.,)H2, where all lengths are expressed in 
lam. The effective height H~t: of the WGM can be evaluated by considering the field 
distribution of the guided mode of the air-confined GaAs slab. For the 250 nm thick 
GaAs disk shown on fig 4, He:/ is 175nm or -0.6 &/n when ~., is around 1 lam, and the 
effective volume is of the order of 6 (/3.,/n) 3. 
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Fig. 4. Typical c.w. PL spectrum, obtained for a 3 jam diameter microdisk containing InAs 
QBs. The arrows indicate the estimated energies of some whispering gallery modes. Insert : 
Scanning electron micrograph displaying a 1.8~m diameter GaAs microdisk fabricated using a 
two-step wet-etching process. 

For WGMs, Q is intrinsically limited by radiation losses 29. In practice however, 
the diffusion by the roughness of the disk edge is by far the major escape path for 
confined photons. When the disk contains QWs, their absorption becomes the 
dominant loss mechanism ; it is then necessary to work at the transparency threshold 
to study the optical properties of the empty cavity 3°'31. As for pillars, a simpler way for 
investigating the empty cavity Q is to perform mPL on disks containing QBs. 

Figure 4 shows a typical mPL spectrum obtained on a single 3~tm diameter 
microdisk. The sharp lines constitute the WGM contribution to the spectrum, while 
the broad background due to the emission of non-resonant QBs into the leaky modes. 
The large number of observable WGM is quite remarkable, since only one or two 
WGMs (with TE polarization and radial quantum number nr = 1) are clearly observed 
for QW emitters, and only above the lasing threshold. An attempt to identify these 
various WGM shows that both TE and TM modes are observed. Within the broad 
spectral range covered by the QB array, all modes with nr =1 are observed as well as 
some higher order WGMs (nr =2 and probably 3). 

The small linewidth of the WGMs highlights the good optical quality of such 
microcavities. In a first experiment, we have studied microdisks processed using RIE, 
with Q's of the order of 3000 for the best modes. We have more recently optimized a 
two-stage wet etching process, which improves considerably the smoothness of the 
disk edge. Q's close to 12000 fiave been obtained in this case for 1.81am diameter 
microdisks, which is eight times higher than the best previously reported results 31'32. Q 
values in the 5000-10000 range are routinely obtained. These large Q's also 
corresponds to a very high Purcell factor, of the order of 125 for Q=10000. 
Microdisks appear therefore as excellent candidates for the study and implementation 
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of the Purcell effect in a solid-state microcavity, all the more since their processing is 
by far more simple and more reproducible than for high-F l, pillars. 

3.3 Other 3D microcavities 

Several other 3D microcavities have been presented during this summer school. S.T. 
Ho described the properties of photonic wire lasers 33, based on a ridge waveguide 
forming a ring resonator. Compared to microdisks, the wire geometry potentially 
provides a better radial confinement, thus reducing the number of resonant cavity 
modes for a given diameter. This is the main reason why larger 13 SE coupling 
coefficients can be observed on wires (]3>0.3) compared to disks (]3-0.1-0.2 30) for 
QW emitters. In order to keep a good confinement in the vertical direction, a low- 
refractive index substrate such as SiOz must be used. For the best structures, the mode 
volume is as low as 3 (~cJn) 3 for a 4 ~tm diameter. However, the strong lateral 
confinement is also responsible of the strong sensitivity to sidewall roughness and Q is 
only close to 300. As a result, we estimate that F F is of the order of 7 for state-of-the- 
art photonic wires. 

The ultimate approach for obtaining very small cavities is certainly the 
implementation of photonic bandgap structures (PBGs) as confining material as 
discussed by Yablonovitch, Joannopoulos and Labilloy. In spite of impressive recent 
progress, 3D PBGs are not yet mature enough to build optical microcavities. Their 
development remains an important challenge since they would allow to get rid of the 
continuum of leaky modes present in other 3D cavities. Until now, only 1D 34'36 o r  

2D 35 PBG cavities have been fabricated, using a combination of waveguiding and 
reflection on the PBG to obtain a 3D photon confinement. As an exemple, we present 
in figure 5 a 2D PBG-microcavity processed within an air-bridge and designed for an 
operation around 1 ~m. As discussed by Yablonovitch in his lecture, defect modes can 
exhibit an effective volume as small as 0.3 (;~c/n) 3, due to their small penetration in the 
surrounding PBG crystal. The air-bridge geometry or a low refractive-index substrate 
is in general necessary to minimize the leakage of the confined photons toward the 
substrate n°. A cavity Q of 265 has been measured by the MIT group for a Si-based 1D 
PBG structure on SiO2, which corresponds to F F =34 (here V,lf = 0.6 (~Jn) 3 ). 34 

4 

3 lam 

Fig. 5. Scanning electron micrograph of an air-bridge microcavity based on a 2D PBG crystal, 
and designed for an operation around 1 lam. 
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3.4 Conclusion 

We have shown in this section that many approaches allow to build high-Ft, 3D 
semiconductor microcavities. Compared to silica microspheres (V~#-1000 (A,/n) 3, 
Q-109) these structures allow a much stronger photon confinement, but exhibit a much 
smaller Q. In the prospect of CQED experiments, these 3D solid-state microcavities 
thus have different advantages. The long-lived WGM of the microspheres are for 
instance ideal for fabricating very-low threshold lasers 19. The small mode volume of 
semiconductor cavities allows to get a large Purcell factor for moderate Q's (100- 
1000) ; the constraint on the emitter's linewidth is then less severe, which opens the 
choice of usable emitters for observing the Purcell effect. The same considerations 
hold obviously within the family of the 3D semiconductor microcavities, when 
comparing e.g. relatively high-Q microdisks and ultimately small volume PBG 
structures. 

4 Purcell effect for QBs in solid-state microcavities 

We present in this section some experimental evidence of the Purcell effect for QBs in 
micropillars and microdisks. 

4.1 Purcell effect for QBs in mieropillars. 

Single pillars containing InAs QBs have been studied at 8K by time-resolved mPL, 
using a set-up based on a streak-camera. Experimental conditions have already been 
detailed elsewhere I°. Let us simply mention that the excitation conditions are such that 
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Fig. 6. Time-resolved PL spectra for QBs in the core of the pillar shown in the insert and either 
placed on resonance (solid line) or out of resonance (dashed line) with the fundamental mode. 
The dashed curve is a monoexponential fit of the PL decay ; the solid one features the result of 
our theoretical model for the QBs on resonance. 
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less than one electron-hole per QB is generated per pulse. This ensures that each QB 
behaves as a quasi-monochromatic light emitter which is a prerequisite for observing 
the Purcell effect. Since both resonant and leaky modes are observed on the mPL 
spectra of  the thinner pillars, we can directly compare in a single time-resolved 
experiment the PL decay rate of QBs either on-resonance or out-of-resonance with 
one of the cavity modes. Such a comparison is highlighted on figure 6 for QBs 
emitting around 1.35 eV at 8K, which exhibit a 1.3 ns lifetime when placed in a 
reference bulk sample of GaAs. We observe a clear shortening of the PL decay (xl/5) 
when the QBs are on resonance with the fundamental mode of  the pillar. On the 
opposite, out-of-resonance QBs exhibit a behavior quite similar to the reference QBs. 
This selectivity shows unambiguously that the decay rate shortening is not due to an 
extrinsic effect, such as non-radiative recombination at the sidewalls, but to the 
enhancement of the SE of  the QBs when on-resonance with one cavity mode. 

This effect has been studied for variable pillar diameters (fig. 7). For each pillar 
under study, the on-resonance lifetime of  the QBs, v,t °", is extracted from a 
monoexponential fit of  the PL decay over the first nanosecond after the pulse. Within 
experimental accuracy, we observe a smooth regular increase of  1/vj" as a function of  
Purcell 's factor F F. It does not exhibit such a monotonic dependence on Q or d since 
Q displays large fluctuations from pillar to pillar for a given pillar size in the 1-2 pm 
range. As expected, the Purcell factor is the relevant microcavity figure of  merit for 
our problem. 
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Fig. 7. Experimental (dots) dependence of the PL decay time 'r,t"" as a function of the Purcell 
factor Fp. d and Q are indicated for some of the pillars under study. Error bars correspond to a 
4- 70 ps uncertainty on ~'d 'n. The solid line shows the result of our calculation of the average 
lifetime of on-resonance QBs. 
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The enhancement factor of SE rate is however much smaller than the Purcell factor 
of the pillar. As stated in section II, only those QBs which are both well matched 
spectrally with the mode and located close to its antinode (i.e. near the center of the 
pillar) experience a strong enhancement of their SE rate. According to (14), we need 
to take into account the random spectral and spatial distributions of the QBs, to 
explain quantitatively the observed SE enhancement factor ~exp. Even for our smallest 
pillars, the number of QBs on resonance with the fundamental pillar mode is large 
enough (20) to perform a statistical averaging of the Purcell effect. As reported 
previously 1°, the result of a numerical calculation allows to reproduce properly the 
time-resolved PL profile (fig. 6) and the dependence of the SE enhancement factor as 
a function of Ft, (fig 7) without any adjustable parameter. 

In the context of this school, it is however more interesting to show that simple 
hand-waving arguments allow to obtain a good first-estimate of ~,xe. Considering Equ. 
14, one notes that the spectral averaging of the Lorentzian factor gives a factor 1/2 
(This averaging is necessary since we study the emission into the resonant mode 
globally due to the limited spectral resolution of our experimental set-up). 
Furthermore, the QBs are distributed all over the cross-section of the pillar so that we 
loose (on average) the antinode enhancement for in-plane directions, which introduces 
typically a factor varying between 1/4 for large diameter pillars and 1/3 for the smaller 
ones. Finally, the dipole associated to the fundamental optical transition of the QBs is 
essentially randomly oriented 41, so that 42 - 1/3. Finally, the fundamental mode is two- 
fold degenerate, and the SE rate into the leaky modes is of the order of 1/'rf~,,. The rate 
for the SE into each confined mode is thus typically Ft,/18"rlr,, and the global SE rate 
(2 Fi/18+l)/'rfr,,, which gives us ~exp - 4.6 for our best micropillars, in good 
agreement with the experimental result. 

4.2 Purcell effect in microdisks 

Time-resolved mPL experiments on microdisks have not yet been performed, and 
might prove to be more tricky than for micropillars due to the poor collection 
efficiency of the PL emitted from the disks. However, the Purcell effect can be also 
observed using a simple cw mPL experiment as shown now. 

Figure 8 displays PL spectra obtained on a single microdisk (R=l.5 ~tm) at 8K for 
various excitation powers P~x. The sample under study is tilted so that the plane of the 
disk makes a 30 ° angle with respect to the optical axis of our experiment set-up. This 
geometry allows to collect more efficiently the emission from WGMs, which is 
sharply concentated around the disk plane (-20 ° FWHM) 29. When Pex increases, one 
observes a clear saturation of the background emission for energies below 1.26 eV 
due to the filling of the QB states. Due to this background saturation, WGM show up 
much more clearly when we raise Pex. For microdisks containing QWs, a similar 
behavior is observed due to lasing. For this microdisk (Q-2500, R=l.5 lam, Fp ~ 18), 
simple estimates show that the gain provided by the fundamental transition of the QBs 
is not large enough to support lasing 42. As a result, lasing is only observed when 
enough additional gain is brought by the optical transitions involving excited QB 
states. This is the case here for the higher energy WGMs (above 1.26 eV), as shown 
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Fig.8. PL spectra obtained for the as-grown (unprocessed) sample, and for a 31am diameter 
microdisk containing QBs as a function of the excitation power. 

by the observation of a standard ~ S-like ~ shape for their input-output curves in log 
scale. 

The low-energy WGMs (e.g. at 1.205 eV) display a more interesting behavior in 
the context of  this work. When one raises the excitation power, their peak intensity 
first increases linearly and then saturates. This behavior is thus similar to the one of 
the background, but for the onset of the saturation, which is observed for a much 
higher (x 5) critical excitation power as shown in figure 9b). Since all QBs are 
similarly excited in our PL experiment, this observation shows that on-resonance QBs 
are less subject to state-filling than out-of-resonance QBs, or, in other words, that the 
radiative lifetime of  trapped electron-hole pairs is much smaller for QBs on-resonance 
with a WGM (~p~5) .  Much larger effects are observed for high-F F microdisks 
obtained by wet chemical etching (see figure 9a). For a 1.8 jam diameter disk (Q=5300 
and/71, =68 for the WGM under study) we obtain here q~/, - 14 for the QB which are 
on-resonance with this WGM. 

Our interpretation of  these cw PL data is supported by a simple estimate of ~xp- 
One expects to observe here an average enhancement factor ¢~xp - 2Fe/(2.2.3)+1, 
where the various corrective factors (from the left to the right) come from the WGM 
two-fold degeneracy, the spectral and spatial averagings, the random orientation of the 
QB dipole, and the emission into leaky modes. We get in this way q~.~, - 12.5 for the 
high-Ft, disk and ~P~xp - 4 for the low-Fp disk, which is, here again, in good qualitative 
agreement with our experimental observation. 
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Fig. 9. Input-output curves for two microdisks : (a) two-step wet etching and R=0.9 pm ; (b) 
RIE etching, R=l.5 lain. Full squares correspond to a low-energy WGM, and empty dots to 
reference out of resonance QBs. The arrows mark the onset of the PL intensity saturation. 

4.3 Potential impact of collective effects. 

Until now, QBs have been treated as independent light emitters. In principle, power 
dependent collective effects could induce a deviation of the PL decay rate (or 
saturated PL intensity) from the value we estimate in our framework. For a weak 
excitation power, emitted photons can be reabsorbed by the QB array, which leads to 
photon recycling and to an apparent slowing of the PL decay. On the opposite, 
amplification by stimulated emission (ASE) could be observed when more than one 
electron-hole pair per QBs are injected on average, which would enhance the emission 
rate. It is thus important at this stage to estimate the average photon number for the 
cavity mode. We focus here on our time-resolved experiment on pillars. 

Our pillars contain five QB arrays, with 4 10 m cm ~- areal density, so that the 
smallest cavity under study (d=l lam) contains about 1600 QBs. Since the mode is 
spectrally very narrow (0.6 meV FWHM) compared to the inhomogeneous 
distribution of QBs bandgaps (60 meV FWHM), only 15 to 20 QBs are coupled to the 
cavity mode (This estimate includes the detuning of the mode with respect to the 
maximum of the QB emission .band). For our experimental conditions, we do not 
saturate the emission from the fundamental optical transition of the QBs, so that each 
QB emits at most one photon per pulse. Since the escape time of the photons outside 
the cavity (lps for Q=2000) is much shorter than the average radiative lifetime (250 
ps) we see the mean photon number in the cavity is smaller than 0.08, even for short 
delays after the excitation pulse. It is therefore reasonable to neglect ASE in our 
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experiment. We can as well neglect reabsorption under weak excitation conditions, 
since the cavity Q is limited by the photon escape rather than absorption by the QB 
array. The same conclusions hold for our smallest microdisks. 

When the pillar surface S is varied, the dependence of the Purcell factor on S 
compensates the variation of the number of QB in the pillar ; we can easily see then 
that the maximum average photon number scales as Q. For large pillars (d~ 4 to 8 I.tm, 
Q~5000), it is thus of the order of 0.2. The effect of ASE on PL decay curves is still 
small, but can explain part of the systematic deviation of experimental PL decay rates 
with respect to our theoretical estimate for the larger pillar diameters (see fig 7). 

5 Purcell  effect on single QBs, other CQED effects 
and related applications 

We have shown for micropitlars and microdisks, that the Purcell effect can lead to a 
clear shortening of the average radiative lifetime of the QBs which are coupled tO a 
resonant cavity mode. In principle, this global effect could be used to design high- 
frequency (>1 GHz) LEDs, for instance for board to board or intra-chip optical 
interconnexions. A major prerequisite for this application however is room- 
temperature operation. Whether sufficiently deep QBs would display a single narrow 
emission line at 300K - and experience the Purcell effect in cavities - is therefore a 
major open question. In the medium term, devices based on the Purcell effect (if any!) 
will more likely use a single QB as an active medium, as discussed in the following 
sections. 

5.1 Purcell effect on single QBs 

Unlike inhomogeneous collections of QBs, a single QB allows to make the best of 
high 1;i, microcavities. For our best micropillars (resp. microdisks), a single QB 
perfectly on-resonance and placed at an antinode of the mode should exhibit a SE rate 
enhancement (2/3 F p + l ) / Z t ~  ~ 20/z¢~ or -60 ps (resp. 80/Zlr, e or 15 ps), where the 
various terms account respectively for the polarization degeneracy (2), the random 
dipole orientation (3) and the contribution of the emission into leaky modes (1). For 
microdisks, SE dynamics would therefore probably be limited under non-resonant 
excitation by the finite carrier relaxation time (20-30ps). 

Due to this strong Purcell effect, a very large fraction of the single QB SE is 
funnelled into the confined modes. The fundamental mode of circular micropillars and 
the WGM of microdisks are doubly degenerate. In this case, ]3 = F I, l ( 2 F p + 3 )  - 0.5 for 
each resonant mode. Lifting this degeneracy is thus of obvious importance. 
Micropillars with elliptical circular cross-section and diameter in the 1-21am range 
exhibit a clear splitting of their fundamental pair of modes for moderate 
excentricities 26. By tailoring the size of a defect placed at the edge of microdisks, we 
can also induce a coupling between contra-propagating WGMs and lift their 
degeneracy. For such single mode microcavities and a single QB on-resonance, 
f l -F~, / (Ft ,+3 ) > 0.9 for pillars (0.95 for disks). Observing such a large ]3 would 
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constitute a huge step forward for solid-state microcavities, since the best value 
reported to date, obtained for photonic wire lasers, is of the order of 0.3.33 

How can we achieve in practice such an ideal configuration ? Dilute QB arrays 
with areal density of the order of one QB per lam 2 can be obtained by MBE for 
deposited quantities of InAs very close to the critical thickness 43'~. If we fabricate a 
collection of l~m diameter micropillars containing on average one QB, we see that 
one fourth of the pillars typically will contain a single QB located reasonably close to 
the field antinode. Temperature tuning of the QB bandgap could be used to obtain the 
resonance with the cavity mode. Assuming a random distribution of the bandgap of 
the single QBs over a ~50 meV bandwidth, and a 5 meV tuning range (which 
corresponds to temperatures in the 8K-77K range, for which the QB emission would 
remain quasi-monochromatic), about one out of 40 pillars would be well suited for 
studying a single QB on-resonance. This system, which mimics the standard ~ single 
atom in a cavity >> CQED system, will allow to probe whether other CQED effects - 
such as strong coupling or photon number state squeezing- can be obtained for solid- 
state cavities containing a single emitter, as discussed now. 

5.2 Strong coupling regime for single QBs ? 

The tight photon confinement in semiconductor microcavities corresponds to an 
extremely strong maximum field per photon. Using eq. (4), we obtain as an estimate 
for e,,,~ 0.8 105, 0.7 105 and 2.2 105 V/m respectively for our best micropillars and 
microdisks, and for 1D PBG microcavities 34. These fields are obviously extremely 
large, for instance more than one order of magnitude larger than for microspheres 19. 
Whether the strong coupling regime can be achieved for a single QBs in such 3D 
microcavities is quite an interesting question, owing to the richness of CQED 
developments on strongly-coupled single atoms. 

Normal incidence absorption experiments on InAs QB arrays have shown that the 
oscillator strength per QB is of the order of f~10, 45 in agreement with simple 
estimates 46. Therefore, the electric dipole component dx (or d0 given by : 

2m co dx 2 
f _ e2 h (15) 

is of the order of 9 10 .29 C.m, which is also quite larger than typical values for atomic 
optical transitions (2.4 10 -29 C.m for the 5s->5p transition of rubidium at 1.59 eV) 19. 

According to Eq.(6), the Rabi energy hf~ of a QB placed at an antinode of the 
vacuum field is equal to -50/aeV when E,~ =lO s V/m. In order to observe the vacuum 
Rabi splitting for a single QB, this Rabi energy should be larger than the arithmetic 
average of the emitter and mode linewidth. This goal is clearly out of reach for present 
pillars and PBG cavities due to their poor cavity Q. On the opposite, future 
developments on microdisks -especially a reduction of their radius and optimisation of 
their thickness- will most likely allow to raise hf~ above 100 ~eV, which is 
comparable to the linewidths of both our best WGM (Q=12000) and the QB emission 
line. We therefore think that an observation of the strong coupling regime on single 
InAs QBs, though difficult experimentally, will probably become possible in the 
future. Other QBs displaying a larger oscillator strength, such as those formed by 
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interface monolayer fluctuations of QWs, might also be very interesting in this 
context. 47 

Whether this regime can lead to interesting applications remains however an open 
question. Unlike atoms in CQED experiments, QBs cannot be inserted and extracted 
at will from the solid-state microcavity. In order to overcome this difficulty we should 
develop means for controlling the interaction time of the QB with the cavity mode on 
the time scale of the Rabi oscillation (-1-3ps!). This will be, obviously, a difficult 
task ! The most promising approach might be the implementation of a X3 non-linearity 
to control optically the refractive index of the cavity material and the mode/emitter 
detuning. 

5.3 Single-photon generation 

The fabrication of single-photon generators, able to emit single photon pulses at 
deterministic times, has been for years a major challenge. Such a source would allow 
to encode information on the single photon level, and to implement efficiently novel 
transmission protocols such as quantum cryptography 48. Sources emitting a regular 
stream of single photon pulses would also provide a high precision photon-flux 
standard 49. 

Three properties must be combined in order to get a single-photon source. First of 
all, the nature of the emitter should ensure that photons are emitted one by one. Such 
an antibunching behavior has been observed for single atoms 5°'51 or molecules 52. In 
order to use suitably this photon flux, it is highly desirable to place this peculiar 
emitter inside a single-mode output coupler, i.e. on resonance in a high /3 (/3-1) 
microcavity. Finally, the active medium should also have a high quantum efficiency 
(7"/-1) in order to avoid a random partition between radiative and non-radiative 
recombination events. 

Single QBs in solid-state microcavities open very challenging opportunities in this 
context, and might allow the fabrication of a compact monolithic single-photon 
source. Let us note however that the anticorrelation of photon-emission events has not 
yet been observed for single QBs. In principle, two electron-hole pairs can be placed 
in the fundamental electronic states of the QB, and nothing prevents them from 
recombining with an arbitrarily short delay. Due to the strong electronic confinement 
however, the energy of emitted photons depends significantly of the QB state of 
charge due to Coulomb interaction t5"16. Considering a QB which is on resonance - 
when empty- with a high Q (Q>500) discrete cavity mode, and supposing that several 
electron-hole pairs are injected in the QB, we see that only the last emitted photon lies 
within the spectral window defined by the cavity mode. As shown before, nearly all 
photons are collected by the cavity mode when the QB is on resonance (/3-1) thanks 
to the Purcell effect. Finally, the quantum efficiency of InAs QBs is close to 1 as long 
as carrier thermoemission can be neglected. Even for small QBs (such as those 
implemented in micropillars and disks until now for practical reasons) 7/-1 for 
temperatures as high as 100K, which might be enough for most applications, and can 
be improved by using deeper QBs. 

Unlike single atoms or molecules, QBs can be excited through a non-resonant 
pumping, either optical or electrical, which makes a practical implementation much 
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easier. Pumping pulses should be adjusted so that few electron-holes pairs are 
captured by the QB (with a small probability of having no injected pair). As stated 
previously, the microcavity containing a single QB should act as a converter of such 
classical pulses, characterised by poissonian statistics, into single photon pulses well 
synchronized (within a few nanoseconds, corresponding to the recombination time of 
the extra carriers of charge) with the excitation pulses. 

Coulomb Blockade (CB) of both electron and hole tunneling can also be used 53 to 
inject exactly one electron and one hole in a QB (obtained e.g. through the lateral 
patterning of a QW) as proposed few years ago 49. This scheme has recently been 
sucessfully implemented in a single-photon turnstile device 53. Unless nanometer-scale 
tunnel junctions are used however, this approach will be restricted to very low 
temperatures (<0.1K for refs 49-53). Using Coulomb interaction within our tiny InAs 
QBs so as to control the energy of emitted photons, instead of regulating the electron- 
hole injection, might be much more efficient. The insertion of the single photon source 
within a microcavity is particularly simple when using QBs, and operation 
temperatures above 77K seem well within reach. 
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Single Photon Sources and Applications 

John G. Rarity,  Stephen C. Kitson, and Paul R. Tapster  

DERA Malvern, St Andrews Rd, Malvern, UK WR14 3PS 

Abs t r ac t .  We discuss sources of single photons for quantum information process- 
ing. For limited applications the attenuated laser is an adequate source. Further 
improvement would be obtained from single atom or molecule emission. Collec- 
tion efficiency into a narrow band and single mode could be improved by photonic 
bandgap material surrounding the emitter. We discuss a measurement showing light 
emission from single dye molecules modified by planar cavity. Another source could 
be time gated single photons created from the parametric downconversion process. 
We go on to show a simple interference effect between separate single photons that 
confirms the quantum nature of this source. 

1 I n t r o d u c t i o n  

In the spirit of driving our physics from eventual applications we write this 
paper  in the following order. First we introduce the concept of quantum 
information in optical terms. We show that  information can be encoded on 
single photons using interferometers or polarisation (itself an interference 
effect). We then show that  these interferometric encoding schemes can be used 
to establish identical random binary numbers ( K e y s )  at remote locations in 
the technique of quantum cryptography. The security of this key distribution 
scheme is dependent on the interferometric encoding of the bits. 

We then describe the possible single photon sources to be used in such 
schemes. The first, in general use at present, is the a t tenuated pulsed laser. 
When the energy per pulse is much less than hw (the energy associated with a 
single photon) most pulses will contain zero photons and a small percentage 
will contain single photons. However we cannot predict which pulses will 
contain a photon and a very small percentage of pulses will always contain 
more than one photon. In quantum cryptography we are limited us to about  
0.1 photons per pulse at the transmitter .  This limits the m a x i m u m  bit rate 
of a system. 

A second single photon source is a single a tom or molecule. Here we ex- 
ploit the natural ly quantum mechanical nature of the emission process. An 
a tom excited by an optical pulse much shorter than its lifetime can only emit  
a single photon. The problem then is to direct the single photon emission 
efficiently into a single mode, Here we describe a demonstrat ion of the prin- 
ciples of a single photon source based on emission from single dye molecules. 
Of interest in the context of this school is the tailoring of the dye spontaneous 
emission to the modes of a planar microcavity. In principle we can make a 
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Fig. 1. Single photon encoding schemes using a) Mach-Zehnder interferometer and 
b) polarisation 

high efficiency single photon source with a microcavity system engineered to 
capture a high percentage of the spontaneous emission. 

The third source of single photon pulses is parametric downconversion. In 
a parametric downconversion crystal pumped by a suitable short wavelength 
laser, pairs of long wavelength photons are created simultaneously, travelling 
in correlated directions, and correlated in energy. Detection of one of the 
photons can be used to gate its partner thus producing a source rich in time 
tagged single photons. A problem with this source is the randomness in the 
emission times of the pairs. This can be overcome by pumping the crystal 
with ultrashort laser pulses. In this case the time uncertainty of the single 
photon pulses can be comparable to the inverse of their bandwidth. Such time 
bandwidth limited pulses are what is required to show interference effects 
between separate single photon pulses and to build up multi-photon entangled 
states. We show a simple example of interference between nominally separate 
sources to illustrate this. 

2 O p t i c a l  Q u a n t u m  I n f o r m a t i o n  P r o c e s s i n g  

2.1 Single P h o t o n  In t e r f e rence  

Take a symmetric Mach-Zehnder interferometer as shown in figure 1. In a 
simple classical analysis with an input field Ea0 and associated intensity 
Iao = IEaol 2 the output intensity will vary as 

1 
lbo/~l = IEbo/~112 = ~I~0(1 + cos¢) (1) 

This is a linear loss free device as Ibo + Ibt = I~o for all interferometer phase 
differences ¢. Here we are interested in the behaviour of a single quantum in- 
cident on the same interferometer. We associate probability amplitudes with 
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the presence of a photon in the input modes and deM with the probability 
amplitudes in a similar way to the classical fields. In the simplest case the 
photon is input from one mode (a0 say) and represented by the number state 
[1 >a0 with unit amplitude. This state is transformed at the first beamsplit ter 

1 
[1 >a0~  ~ [[ 1 >m0 +i  [ 1 >0~1] (2) 

noting that  the reflection and transmission amplitudes of the beamsplitter 
are i /x/ '2,  1/v/2 with the phase change on reflection required for energy con- 
servation. Obviously the presence of the photon in one arm implies an empty 
mode or vacuum state in the other. Here we specialise to single photon states 
throughout  and thus leave the vacuum implicit. After propagating and in- 
curring a phase delay e i¢ only in the ml  arm of the interferometer a similar 
transformation occurs at the second beamsplitter and the state becomes 

[1 >a0--* ½(1 + ei¢) [ 1 >b0 +½(I  - ei¢) I 1 >bl (3) 

We now identify the probability of detecting a single photon at a particular 
the interferometer output  as the modulus square of the associated probability 
amplitude 

Pbo/bl = ½(1 + cos¢) (4) 

which of course is identical to the classical result when we have unit intensity 
input• Again we see that  Pb0 + Phi ----- 1 the total probability of detecting a 
photon is unity in this loss free case. 

We can now use this system to encode information on  a single photon. A 
phase ¢ = 0 sends all photons to b0 while ¢ = rr sends all pulses to bl .  We 
can interpret a detection in b0 as a 'zero' and b l  as a '1'• One extension from 
any classical encoding scheme is the situation where the phase lies between 
these two extremes. Setting ¢ = 7r/2 transforms the input state to 

e3iX/4 
I1 >oo-  1 >bo + l l  >bl) (5) 

and now our single photon data is in a superposition state of a 1 and a zero. 
Detection at this point will provide random information as we have a 50% 
chance of detecting a 1 or a zero. 

Information can also be coded on a single photon using two orthogonal 
polarisations such as vertical and horizontal. The coding can be manipulated 
simply by rotating the polarisation in a waveplate. We show this to be equiv- 
alent to the above scheme by drawing a polarisation interferometer in figure 
lb. Now the m0, ml-modes  are co-linear circular polarised modes and the 
relative phase between them is varied by rotating the waveplate. If we define 
0 as the angle between the waveplate fast axis and the polarisation direction 
of the a0 mode then the interferometer transforms 
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of Bennett et al (1992) 

I1 >aO m*' (COS2~ I 1 >bO --sin20 I 1 >bl) (6) 

and again we see definite outputs when 20 = 0, r /2  and superposition states 
otherwise. 

2.2 Quantum Cryptography 

A direct application of this simple single photon coding has been in secure 
key sharing schemes commonly known as quantum cryptography (Bennett 
el  al 1992, Townsend el al  1993, Townsend 1994, Rarity el al  1994). In most 
communication applications losses are large and most photons (ie bits) do 
not arrive. This is not a problem in quantum cryptography because all we 
want to do is es tabl ish  ident ical  r a n d o m  number s  at two remote loca- 
tions. The sender encodes a random series of bits on single photon pulses. 
The receiver analyses M1 single photons that arrive then communicates back 
from the remote location (using a conventional communication channel) the 
times at which these photons have arrived. Only those bits that arrive are 
then incorporated into the 'key'. Here one sees the first level of security of 
such a system. Photons are indivisible objects thus if an eavesdropper picks 
off a small percentage of photons and measures them, they will not reach the 
receiver and not be included in the key. However, a subtle eaves-dropper can 
measure the photons then create copies to reinject into the communication 
channel thus breaching this security. To prevent copies being made the sender 
has to randomly change the encoding basis. For instance in polarisation based 
quantum cryptography (figure 2) 0's are randomly encoded with either 0 ° OR 



356 

450 polarised single photons and l's are encoded in 900 OR 1350 polarised 
single photons. The receiver then incorporates a polarising beamsplitter ran- 
domly switched between 0 ° and 45 ° measurement bases. As seen above, 100% 
correlation (error free detection) only occurs when the sender and receiver 
use the same coding basis (0 ° or 45o). Sender and receiver must also commu- 
nicate this measurement basis and discard all received pulses where the send 
and receive bases were different. After all uncorrelated bits are discarded the 
transmitter and receiver are left with near identical random bit strings to be 
used as a key. An eavesdropper must now guess which measurement basis 
was used. He will choose wrongly 50% of the time and 25% of reinjected 
photons will turn up at the wrong output. The error rate is estimated by 
openly comparing a fraction of the key bits which are then discarded. If a 
large number of errors are detected the sender and receiver must assume that 
their key security has been compromised and restart the key exchange. 

Recent experiments are showing that such key exchange schemes could be 
used in real communication networks (Townsend 1997) with adequate envi- 
ronmental stability (Muller et a11997) and even in free space systems (Buttler 
et al 1998) aimed at uploading keys to low earth orbit satellites. The main 
limitation to quantum cryptography is that we cannot amplify the signal to 
extend the system range as we can in a conventional communication system. 
Essentially any amplification that did not introduce errors would be a form 
of quantum cloning and as a result would violate the Heisenberg uncertainty 
principle. Present systems also rely on weak lasers as a source approximating 
single photons (see below) and this limits the effective single photon genera- 
tion efficiency to around 10%. Coupled with detector inefficiencies at longer 
wavelengths this limits the present maximum range of fibre based systems to 
50km (Hughes et al 1996). 

3 T h e  W e a k  L a s e r  

To date we have no true single photon sources available off-the-shelf. How- 
ever for simple applications such as quantum cryptography attenuated laser 
pulses are adequate. The photocount probability distribution P(n) for an 
ideal (classical) laser pulse of energy E is given by a Poisson distribution 
(Loudon 1987) 

P ( n ) -  exp ( -~ )  n! '~-" (7) 

with mean photocount ~ = E/hw where hw is the energy associated with 
a single quantum. When the mean photon number per pulse is ~ --0.1 the 
probability of seeing one photon is P(1) ~_ 0.09 while the chance of seeing 
two photons is P(1) ~ 0.004. Thus of those pulses that contain at least one 
photon only 1 in 20 will contain more than one photon. This is assumed 
adequate proof against eavesdropping in a quantum cryptography system. 
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Fig. 3. Schematic of the apparatus used to study the fluorescence fluctuations from 
a small number of dye molecules in a microcavity 

However absolute proof of security is yet to be shown with such weak 
pulses. The quantum state associated with such pulses is mostly vacuum 

) [k~>_~exp(--~) [vac>q-a[1 > q - ~  12> ..... (8) 

where the amplitude of the coherent state is a and [~[~ = ~ .  When ~ =0.1 
we see that the amplitude [a[ -~0.3 suggesting that coherent methods of mea- 
suring the state may provide more information than direct detection (Yuen 
1998). Weak pulses also have the disadvantage of starting out only 10% oc- 
cupied. 

4 S i n g l e  M o l e c u l e  S o u r c e s  

A convenient future single photon source may be a single molecule, atom, 
ion or even single quantum dot (see chapter by J M Gerard). These two level 
systems cannot emit more than one photon at a time. The detection of a 
single photon conditions the system to be in the ground state and there is 
a finite time of order the excited state lifetime before emission can occur 
again. When we pump such a system with pulses shorter than the excited 
state lifetime we expect to see single photon emission in a regular train (De 
Martini 1996). 
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Fig. 4. g(2)(t) versus delay t for a cavity containing a range of concentrations of 
R6G from 10 -s to 10 -9 molar. As dye concentration decreases the value of g(2)(t) 
increases. The circles are experimental data and the lines are a fits to equation 10 

Here we illustrate this with a system consisting of a dilute dye solution 
in a thin (40nm) layer confined within a Fabry-Perot cavity (Kitson et al 
1998). The cavity serves to increase the efficiency with which the spontaneous 
emission is collected. The single molecule regime is reached by using very 
dilute (10-9M) dye solutions and a small illumination volume (around 40nm 
thick by 6/zm diameter). When there are a small average number of dye 
molecules in the excitation volume the fluorescence signal exhibits strong 
fluctuations. The fastest fluctuations arise from the mechanism cited above 
where a dye molecule that  has emitted a photon must remain dark for a 
t ime comparable to the excited state lifetime. This is commonly known as 
anti-bunching. On intermediate timescales we see fluctuations arising from 
passage through the triplet state to the ground state by non-radiative routes. 
On long timescales there are fluctuations in the number of dye molecules in 
the measurement volume due to diffusion in the liquid suspension. 
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The dye used was Rhodamine 6G (R6G) dissolved in propylene carbonate. 
Propylene carbonate was chosen as the solvent because of its low intrinsic 
fluorescence and low volatility. R6G is highly efficient and can be excited 
with the 488nm line from an argon ion laser. The dye solution is placed in a 
microcavity consisting of two dielectric mirrors, made from alternating layers 
of silica (n = 1.5) and tantalum pentoxide (n = 2.265). The peak reflectivity 
of the mirrors was designed to be at a wavelength of 560nm by making the 
thickness of each layer A/4n (where A is 560nm and n is the refractive index 
of the layer). The top layer of each mirror is silica, deliberately grown 20nm 
thinner than the A/4n condition. The microcavity is formed by placing a drop 
of the dye solution on one mirror, and then pressing the other one on top. 
Placing the cavity in a vacuum chamber for around an hour causes the liquid 
to slowly evaporate, pulling the two mirrors together. The resulting structure 
is a A/2n thick microcavity with a dye layer, approximately 40nm thick, at 
the centre. The cavity material is the lower index silica so that the dye layer 
sits at the antinode of the electric field of the fundamental cavity mode, into 
which the molecules preferentially emit. This narrows the emission spectrum 
to match the cavity band width and so increases the efficiency with which 
the light can be collected through a narrow band pass filter which is used to 
discriminate the fluorescence from scattered laser light. 

Figure 3 is a schematic of the confocal fluorescence microscope used to 
study the fluorescence from the microcavity. The 488nm light from a CW 
argon ion laser is focused through a 100/~m pinhole and then through a mi- 
croscope objective (x25, 0.35 numerical aperture) onto the microcavity. The 
same lens also collects the fluorescence from the dye molecules. The diameter 
of the region from which the light is collected is defined by the pinhole to be 
around 6/~m. The collected light passes through the dichroic mirror and ad- 
ditional filters are used to remove any remaining laser light. The fluorescence 
light is divided equally between two avalanche diode single photon counting 
detectors which are connected to a photocount correlator and to a time inter- 
val analyser. Two detectors are used to circumvent the problems associated 
with the deadtime of the detectors ,,~l#s, allowing the measurement of time 
intervals as small as 0.5ns. 

The electronics estimates photocount correlation function 

(i(t)z(t + r)) (9) 

where I(to) is the measure intensity at time to and I(to + t) the intensity 
to ls (2) t is measured measure a time t later. Over the time range 100ns , g ( ) ' 

using parallel digital correlator which evaluates equation (9) in real time. The 
system used here contains eight 32 channel correlators with sample times 
T, 6T, 36T,. .... etc. with T = 100ns. The time range from 0.5 to 100ns is 
covered by a time interval analyser which records a histogram of the time 
interval between consecutive pairs of photons. At low count rates, so that the 
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average number of photocounts per lOOns sweep is much less than one, the 
t ime interval distribution is a good approximation to g(2)(t). In our system 
the photocount rate is typically 30kHz so that  this approximation holds. 
Combining the data  from the time interval analyser and the correlator then 
gives g(2)(t) over the t ime range ns to s. Using a simple three level model 
for the R.hodamine molecule we have evaluated a theoretical form for the 
correlation function 

1 
g(2)(t) = 1 + (M)(1  +t/td) [1 -- (1 + a) exp(--t/te) + aexp(--t/tt)] (10) 

where t ,  is the excited state lifetime, tt is the triplet state lifetime and td 
the typical diffusion time across the volume. Figure 4 is a plot of g(2)(t) versus 
r for time scales ranging from ns to seconds obtained for a cavity containing 
various concentrations of dye solution with an incident laser power of 30 
mW. Solid lines are fitted by equation (10). The curves clearly show the 
three features that  we expect. The initial rise is due to antibunching, the 
drop at around l/is is due to triplet state shelving and the drop at around 
lms is due to diffusion. We see that on average there are of order (M) = 0.4 
molecules in the volume for the most dilute sample. The positive slope at zero 
delay in the correlation function is a clear sign that  the emit ted light is non- 
classical. However for a true single photon source the conditional probability 
of seeing a second photon some time after an emission would be zero and 
as a result g(2)(t ---* 0) --- 0. Here the Poisson number fluctuations due to 
diffusion exactly cancel the short t ime antibunching. This was also the case in 
the original anti-bunched light experiments carried out with two level atoms 
(Kimble et al 1977). The emitted light tends, therefore, to consist of bursts of 
antibunched photons separated by dark intervals of order #s, due to triplet 
state shelving, and of order ms due to diffusion in-and-out of the volume. 
In order to see constant antibunched light we would need to freeze out the 
diffusional motion and study a single dye molecule. However the short triplet 
lifetime we measure is a result of triplet state quenching by dissolved oxygen 
with the subsequent creation of singlet oxygen. From experiments carried out 
at various laser powers we find clear evidence that  the dye bleaches due to 
oxidisation by the highly reactive singlet oxygen. In ongoing experiments we 
are investigating dye performance in the presence of other triplet quenching 
agents in oxygen free solutions. We do see evidence of improved dye lifetime 
but as yet have not been able to freeze our system and study fixed single 
molecules. Other workers (Bacl~6 et al 1992) have been able to show more 
stable dyes (with low triplet branching ratios) at cryogenic temperatures.  

When we do manage to identify a stable two level system preferably op- 
erating at temperatures close to ambient we will also have to address the 
collection efficiency. The dye emission is naturally much broader band than 
the cavity bandwidth and as a result any lifetime alterations (Purcell factor) 
due to the cavity will be negligible. We can estimate the geometric collection 
efficiency from the ratio of the solid angle subtended by our collecting lens 
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Fig. 5. Gated single photon source based on a pulsed laser (double mode locked 
Ti Sapphire, 407.5nm) pumping a Beta Barium Borate crystal cut to emit pair 
photons in the near infra-red (815nm wavelength) The gating detector signals the 
presence of single photons in the measurement arm. The presence on single photon 
states can be inferred from a lack of coincidences across the beamsplitter. 

in the silica mirror substrate ~2 compared with the full 27r steradians that 
the dye emits into. For our lens of NA 0,35 we find a geometric collection 
efficiency of 2.5%. To improve on this we need to increase our numerical aper- 
ture or to strongly alter the emission pattern by going to a non-planar cavity 
such as a micro-pillar or confocal arrangement (see chapters in this volume 
by Gerard et al and Abram et al). 

5 Gated Parametric  Downconversion 

A third source of single photon states exploits the pair photon generation 
process of parametric downconversion. Detection of one photon of a pair can 
be used to gate detection of the other. Demonstration experiments showing 
optical and electronic gating of single photons were performed some time 
ago in our laboratory (Rarity et a] 1987) using bulk non-linear crystals. Al- 
though single photon states were detected the counting rates were extremely 
low due to the poor detectors and other losses in the system. More recently 
we have been working on a pulsed source (Rarity 1995, Rarity and Tapster 
1996, Rarity et al 1997, 1997a, Rarity and Tapster 1998, 1999) where the 
single photon state is confined to within a 130fs time window by the dura- 
tion of the pumping pulse (a doubled mode locked Ti-sapphire laser). In this 
experiment (figure 5) we again used a bulk crystM and then launched the pair 
photon beams into single mode fibres as would be required for a quantum 
cryptography source. In the experiment we count photons in fibre coupled 
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Fig. 6. The experimental apparatus used to demonstrate interference between sep- 
arate sources. Solid lines indicate light of 815nm wavelength, dashed lines indicate 
light of 407.5nm wavelength and thick curved solid lines represent optical fibres. 

detectors with efficiencies of order 7/=40%. However the singles rates in the 
detectors are only of order S=5 kilocounts per second while the gated single 
photon source rate is of order G = I  kilocount per second. 

The gated rate G can be expressed as 

G = a2w2pr (11) 

where r is the pulse repetition rate of the pump laser (100Mhz here), P is 
the number of pair photons created in the single mode per pulse, and a is the 
loss due to mode matching in the fibres and other filter edge effects. Similarly 
the singles rates are S = ayPr.  From this we see that  a = 0.5 and that  the 
gated rate is reduced by a factor of 4 by mode matching losses. Thus given a 
photodetection in the gate detector there is at least a 50% probability that  
the corresponding pulse in the other fibre contains a single photon and the 
probability of two photons in the pulse is vanishingly small. This is a five 
fold improvement on an attenuated classical source but  the overall emission 
rate of 1 kilocount per second is far too low for cryptography applications. 
The efficiency of creation of these single spatial mode single photon states 
could be increased if we were to use a medium engineered such that  only two 
modes are available to the downconverted photons. Obviously this could be 
done in a suitably designed photonic crystal medium. 

In practice second order non-linearity has recently been demonstrated 
in poled single-mode optical fibres (Kazanski et al 1994). If adequate non- 
linearity can be achieved we expect to be able to have downconversion pairs 
emitted directly into the fibre mode. There would be small losses in separating 
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the pairs using wavelength selective couplers but we might expect to see 
effective numbers of photons per gate greater than 0.9. 

6 I n t e r f e r e n c e  b e t w e e n  s e p a r a t e  s i n g l e  p h o t o n  s o u r c e s  

We illustrate the time-bandwidth product limited nature of our pulsed gated 
source in a simple interference experiment where we mix a gated single pho- 
ton pulse from our source with a weak laser pulse at a beamsplitter. The 
experiment is shown in figure 6 (Rarity et al 1997). A frequency-doubled 
mode-locked laser (407.5nm wavelength) pumps a thin parametric downcon- 
version crystal cut for non-degenerate operation. Signal and idler photons 
satisfying energy conservation are emitted spontaneously in a broad band 
cone behind the crystal and apertures are placed to select 815nm wavelength 
beams from opposite ends of a cone diameter. Detection of an idler (or gate) 
photon in one beam with time resolution better than the pump pulse sep- 
aration time essentially localises a single signal (a-mode) photon within a 
pulse length which in the experiment is around 130fs. As the signal photon so 
selected is a good approximation to a one-photon state it must have random 
phase when we measure it with respect to the original near infra-red beam. 
The two can be thought of as separate sources. Thus we expect to see no first 
order interference fringes when we mix this single photon source with coher- 
ent pulses from the undoubled mode-locked laser in a beamsplitter as shown. 
However when we reduce the intensity of the coherent pulses to the point 
where they too approximate single photons we see a strong two-photon in- 
terference effect. As seen in equation 2 passage through a 50/50 beamsplitter 
takes a single photon state to the superposition 

1 
I1 >,~o-' ~ [I 1 >,-,,o --I-i I 1 >ml] (12) 

1 
11 >o1~ ~ [i I 1 >,-,,o + I 1 >,-,,1] 

And thus when we input simultaneously into both ports we obtain (Fearn 
and Loudon 1987) 

1 
11 >,,o 11 >,~1~ ~ [I 2 >,7,0 + i l  2 >ml] (13) 

where all terms in [1 >m0 I1 ~>rnl cancel due to destructive interference aris- 
ing from the phase change on reflection. Thus coincidences between outputs 
across the beamsplitter disappear when the two inputs are made indistin- 
guishable from measurements made at the outputs. We find the same effect 
when one input is replaced by a weak coherent state as it is dominated by 
vacuum and one photon contributions. However the requirement for indistin- 
guishability can only be met by filtering our pulsed source through narrow 
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filters that effectively produce a coherence length as long or longer than the 
original pulses. We also need to restrict our observations to a single spatial 
mode through the use of single mode optical fibres at the detectors. In the 
experiment (figure 6, Rarity et al 1996, 1997, 1997a) we were able to show a 
reduction of the coincidence rate to 36% of its value when pulses were dis- 
tinguishable. This experimental arrangement can be extended to show the 
non-local inteference effects unique to quantum mechanics (Rarity and Tap- 
ster 1997a), to demonstrate quantum teleportation (Bouwmeister et al 1997) 
and to three photon entanglement (Rarity and Tapster 1999) 

7 Conclusions 

We have shown that for present applications, namely that of quantum cryp- 
tography the weak laser pulse is still the best source of, albeit approximate, 
single photon states. However progress is being made in the generation of sin- 
gle photon states from single quantum systems. We have shown in principle 
that single dye molecules could be used as a single photon source but need 
to improve the efficiency of collection into a single mode. and the dye sta- 
bility (possible by cooling to cryogenic temperatures. Other sources could be 
single trapped atoms or ions and a more technologically approachable source 
could be the single quantum dot coupled to a microcavity. However all these 
sources will only rival the weak laser when the efficiency of coupling into a 
single mode exceeds 10%. 

The gated parametric source can easily be made more than 50% efficient. 
However here it is the low, and random, gating rate which limits the applica- 
tion to quantum cryptography. A brighter source of photon pairs is required 
possibly creating the pairs directly into a single mode fibre or waveguide. 

We can extend the single photon encoding via interference to multiple pho- 
ton encoding in the multi-photon interference experiments that lead on from 
the above section. Eventually we will be able to create a non-linear element 
sensitive at the single photon level and be able to build arbitrary entangled 
states of many photons. Such a system forms a quantum computer capable 
of performing arbitrary calculations. The extra degree of freedom, when a bit 
can be in a superposition of two values, may lead to more rapid evaluation of 
certain difficult problems such as factorisation. However we must remember 
that we are still a long way from such a system as it has only recently been 
possible to demonstrate certain simple three photon entanglement effects. 
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Abs t r ac t .  Most of the work on photonic crystals has been devoted to the study 
of the linear optical properties of these refractive index heterostructures. In this 
lecture, the use of optical heterostructures for nonlinear optics and in particu- 
lar frequency conversion is reviewed. A key issue for frequency conversion is the 
possibility of phase matching, that is to compensate for optical dispersion, which 
results in different phase velocities for light of different frequencies. Various opti- 
cal heterostructures, which can be used for phase matching nonlinear interactions, 
are described. A first way consists of engineering form birenfringence in a com- 
posite multilayer material. In that case the different waves propagate in the plane 
of the layers, and phase matching is obtained by making use of the different dis- 
persion relations for two perpendicularly polarized Bloch waves. Generalization of 
form birefringence phase matching in two-dimensional (2D) photonic crystals is 
discussed. Quasi phase matching (QPM) is another possibility, which has achieved 
considerable success for instance in periodically poled LiNbO3: in that case, the 
propagation is perpendicular to a one dimensional multilayer system of periodic 
nonlinear susceptibility. QPM can be generalized in 2D: the possibilities offered 
by frequency conversion in a 2D photonic crystal of X (2) are discussed. Interesting 
perspectives are opened with this kind of 2D nonlinear interaction, described by a 
nonlinear Bragg law. 

1 I n t r o d u c t i o n  

1.1 P h o t o n i c  c r y s t a l s  n e e d  n o n l i n e a r  o p t i c s  

In the developpment of the field of photonic band gaps materials,  the analogy 
between electrons and photons has been extensively stressed: the mathemat i -  
cal tools (Floquet-Bloch theorem) and the semantics (conduction and valence 
band, donors, acceptors) from the well established theory of semiconductors 
were used for the description of photonic band gap materials[l] .  Following 
this analogy, the most  optimistic people compared the promising early years 
of photonic band gap materials  with the revolution of semiconductors in the 
50ths. It  has also been stressed that  important  differences exist between elec- 
trons and photons, which make this comparison very risky. These differences 
between electrons and photons are summarized in figure 1. First, the photons 
are described by a vectorial field whereas the electron wavefonction is scalar. 
A second difference is the mass of electrons: electrons are usually localized 
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(on atomic potentials) but, in a crystal, the electron wavefunction is delo- 
calized in the array of coupled potential wells. On the opposite, the photon 
has a delocalized intrinsic nature, and in a photonic crystal (PC), the field 
can be localized on a defect in the array of refractive index. The most im- 
portant  difference between these two particules is nevertheless the Coulomb 
interaction. For electrons, the Coulomb interaction makes the calculation of 
electron states in bulk or quantum heterostructures a very complex prob- 
lem (see the lecture of Stefan Koch), with phenomena as excitons, band gap 
renormalization and other collective effects. In the case of photons, the ab- 
sence of the Coulomb interaction makes the theoretical calculation of, for 
instance, relation dispersions in crystals, far easier: In the linear approxima- 
tion of Maxwell's equations, electromagnetics is a single particule problem. 
But what is an advantage as far as theoretical calulation is concerned is a 
severe drawback for device purposes: the success of electronic devices (for in- 
stance the transistor) is based on the possibility of controlling the motion of 
electrons with other electrons via the Coulomb interaction. Doing the same 
with photons requires nonlinear optics. 

Electrons 

Photons 

Scalar  wave 

E 
Vectorial  field 

cou, o   
interaction 

>< 
No Coulomb 
interaction 

[a,at]÷=l 

Fermions 

[a,at]=l 

Bosons 

mass 

\ /  
0 - - -  
\ 

no mass 

Fig. 1. Some differences between electrons and photons 

In order to make active devices with PCs, we need indeed to control the 
photons with an external parameter,  we need a way to switch the electro- 
magnetic energy from one mode to the other. The electrons change very often 
their energy in solids: they meet other electrons, phonons, defects... Chang- 
ing the energy of photons is another matter: this is the field of nonlinear 
optics. The first point in this introduction is then the following: Due to the 
absence of the Coulomb interaction, PCs need nonlinear optics, in order to 
make some active devices. In this paper, we will deal with an important  part 
of nonlinear optics : second-order frequency conversion. 

1.2 Nonlinear optics needs photonic crystals 

Optical frequency conversion[2,31 by second order nonlinear interaction is a 
way to obtain coherent light in various spectral regions. The frequency dou- 
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bling (or second harmonic generation, SHG) process is used for instance to 
obtain green light from the very efficient near infrared YAG laser, or blue 
light from semiconductor laser diodes, whereas difference frequency genera- 
tion (DFG) is the basic process for high power mid infrared sources such as 
optical parametric oscillators (OPOs). The most famous nonlinear materi- 
als used for frequency conversion are KDP, KTP  or LiNb03[3], but several 
other crystals can be used: AgGaSe2, GaAs, synthetic materials as organic 
molecules or semiconductor quantum wells (QWs)... In the simple case of 
plane-wave, collinear SHG, with a non-depleted pump, the second harmonic 
power scales typically as[4]: 

p2~o c02 (X(2))2 L 2 sin 2 (_4~_) 
(1) 

p w  7l 3 (..._.ff._)AkL 2 

L is the interaction length of the nonl inear  process, P~ the pump power at 
the frequency w, and n the refractive index of the medium. In Eq. (1), two 
parameters are of paramount importance, among the different characteristics 
of nonlinear crystals. 

The first one is the nonlinear coefficient )/(2), which reflects the strength 
of the nonlinear interaction, and is related to the degree of asymmetry of the 
electronic potential at the microscopic level. Let us justify in a few words why 
such an asymmetry gives birth to nonlinear frequency conversion[4]. An inci- 
dent pump field puts an electron in a superposition of different eigenstates of 
the potential ; in linear optics this electronic displacement is described by the 
polarisation, which is proportionnal to the field (via the linear susceptibility 
X(1)). The polarisation is a source term in Maxwell equation ; this means 
that  the electron radiates an electromagnetic field in response to the incident 
field, and this is the basic explanation of the refractive index in materials. 
In nonlinear optics, due to the asymmetry of the potential, the eigenstates 
are not centrosymmetric and the polarisation is not linearly proportionnal to 
the incident electric field. The polarisation has still the same temporal pe- 
riod as the incident field, but the nonlinearity has given birth to harmonics 
in the Fourier spectrum of the polarisation : Second harmonic frequency, in 
particular, is generated. 

The second crucial parameter in Eq. (1) is Ak, which accounts for the 
possibility to match the phase velocities between the interacting fields at a~ 
and 2c0[2]. Indeed, due to the optical dispersion, the two waves do not travel 
at the same velocity in the material. This results in a momentum mismatch 
A k  k2~O _ 2k~ 2~o (n2~ = = ~- - n ~) between the propagating harmonic wave 
and the non linear polarization, the latter being source of the former. After a 

7r distance Lcoh = ~-#, called the "coherence length", the nonlinear polarization 
and the generated wave acquire a phase lag of 7r, and, due to destructive inter- 
ference, the second harmonic power decreases for L > Lcoh (note, in Eq. (1), 
the ~i,~ dependence in L). High SHG efficiencies require small Ak processes. 
Reaching or approaching Ak = 0 is called "phase-matching", and can be 
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achieved for example by waves having different polarizations in birefringent 
is more severe crystals. It appears that  the phase-matching condition Ak < T 

when the crystal length increases. This is because the phase matching con- 
dition expresses the photon momentum conservation, which is required with 
an accuracy inversely proportional to the interaction length. Parameters with 
some impact in the choice of a nonlinear crystal are the refractive index (note 
the cubic dependence in Eq. (1)) and the damage threshold for high-power 
applications. However, the X(2) and the possibility of phase-matching are of 
greatest importance because the nonlinear efficiency varies by orders of mag- 
nitude between two different nonlinear crystals (with different X:(2)) or two 
different temperatures or angles of incidence (Ak = 0 depends on T and 0). 
In general, they correspond to the two basic requirements for high-power co- 
herent electromagnetic emission (for instance by an array of antennas): high 
power emission of individual emitters, and phase coherence between all the 
emitters, according to the Huyghens-Fresnel principle. 

Semiconductors (and especially GaAs) are very interesting materials for 
nonlinear optics, because the high degree of control of the technology of 
this material widely used for optoelectronics gives the opportunity to create 
artificial structures in which these two key features (the nonlinear suscep- 
tibility and the phase matching) can be controlled. Thanks to the progress 
of molecular beam epitaxy or metal organic chemical vapor deposition, dif- 
ferent materials such as GaAs, AIGaAs or InGaAs, GaSb or AIGaSb, and 
a great number of related alloys, can be grown in very thin adjacent layers, 
with a high control of the interface between the different materials up to the 
atomic layer. Through an optimization of the widths and compositions of 
the different layers, it is possible to engineer the energy levels of electrons in 
semiconductor quantum wells in order to get the desired electronic proper- 
ties. This has been called band gap engineering or quantum design[5,6]. The 
energy between different quantized levels can be tuned and also the position 
of the levels with respect to the barrier potential. The dipole matrix elements 
describing the strength of the interaction of the material with an electromag- 
netic field can also be engineered, and this has been used for engineering the 
X(2) in semiconductor heterostructures. A review of this field can be found 
in [7]. 

In addition to band gap engineering for the control of the behavior of elec- 
trons, semiconductor heterostructure growth and technology have given birth 
to a great number of structures controlling the motion of photons[8]; and all 
these structures are interesting for frequency conversion purposes: integrated 
waveguides [9], Fabry Perot cavities [10,11], or more recent objects as whis- 
pering gallery s tructures [12], pillar microcavities [13], photonic wires [14], 
air bridges [15] or photonic band gap materials [16-18]. By analogy to band 
gap engineering, this field can be called "refractive index engineering" [18]. 
Among all photonic applications, the possibility of phase matching nonlinear 
interactions will be the subject of this paper. If band gap engineering en- 



370 

ables one to engineer the microscopic electronic properties of materials (and 
in particular X (2), it will be shown how refractive index engineering enables 
one to engineer the macroscopic optical properties of the composite material, 
in particular to get the phase matching conditions Ak = 0. In both cases, 
the success relies on the possibility of realizing materials by design, thanks 
to growth and processing of materials. 

In second order nonlinear optics, the material is fully described by two 
optical susceptibilities: The linear one (X0)) (which is related to the refractive 
index) and the nonlinear one (X(2)), which gives the source term for a second 
harmonic beam. The possibility of building a PC with a nonlinear material 
can then be divided in two ways, depending on the susceptibility which is 
periodic. This lecture is thus divided in two parts. In the first one, structures 
where the linear susceptibility is periodic will be discussed, these structures 
belong to the family of PCs in the classical sense. In a second part, structures 
where the nonlinear susceptibility is periodic will be described. This includes 
QPM structures that  have been used for years in nonlinear optics, but new 
possibilities in 2D PCs of X (2) will also be presented. 

2 P h o t o n i c  c r y s t a l s  o f  X (1) 

2.1 1D p h o t o n i c  c rys ta l s :  F o r m  b i r e f r i nge n c e  in m u l t i l a y e r  
h e t e r o s t r u c t u r e s  

As already said in the introduction, a key feature of a nonlinear material is 
the possibility of phase matching. Phase matching can be achieved by varying 
the velocity of waves in the nonlinear medium, which implies engineering the 
refractive indices in the material. In this part, in particular, it will be shown 
how this is possible in a multilayer stack. Phase-matching is indeed obtained 
by using a built-in artificial birefringence in the new composite multilayer 
material: the isotropy of bulk GaAs is broken by inserting thin oxidized AlAs 
(Alox) layers in GaAs [19]. This concept, called form birefringence[20,21], 
was proposed in 1975 by Van der Ziel[22] for frequency conversion phase- 
matching. However, the experimental realization of this proposal has been 
achieved only very recently, due to the lack of a well-suited pair of materials 
having a high nonlinear coefficient, and high enough refractive index contrast 
for form birefringence phase matching[19]. 

An intuitive way to understand the origin of form birefringence is to 
consider the macroscopic crystal formed by a GaAs/Alox multilayer system. 
GaAs is a cubic semiconductor of point group 43m, and therefore it is not 
birefringent. The presence of thin Alox layers grown on a (100) substrate 
breaks the symmetry of 3-fold rotation axes and the point group of the com- 
posite material becomes 42m, i.e. the same as KDP. This artificial material 
has the nonlinear properties of GaAs: in particular the same tensorial char- 
acter and roughly the same nonlinear coefficient, (if we neglect the small 
zero contribution of thin Alox layers), but the linear optical symmetry of 
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KDP. Otherwise stated: one takes advantage of the microscopic nature of the 
nonlinear polarization given by the ionicity of GaAs, and the macroscopic en- 
gineering of the refractive index on the scale of the extended electromagnetic 
wavelengths. It  can be noticed that  with (111) oriented GaAs, the intro- 
duction of Alox layers switches the point group from 43m to 3m, which is 
identical to tha t  of another nonlinear birefringent materiM: LiNbOa. These 
symmet ry  considerations are illustrated in Fig.2. 

I "' GaAs 

(I oo) GaAs 
, ,120, ~ 

3-fold rotation ~ /  
axis off 

(100)~ . . . . . . .  

I / / / / / / /  

New point group: (;[2m) 
(KDP-like) 

(:~3m) ] 

(111) GaAs 

. . . .  . ~  . . . .  4-fold rotation 
axis off 

. . . . . . .  Ik (111) 
/ / / / ~ /  / / 

New point group: (3m) 
(LiNbO3-1ike) 

Fig. 2. Point groups of multilayer stacks with GaAs. The point group of QaAs is 
43m, this means that this material is not birefringent. If some layers of an amor- 
phous material are inserted in a (100) GaAs substrate (on the left), the 3-fold 
rotation axes (dashed arrows) disappear and point group of the composite material 
is now 42m, the same as KDP. If the same layers are inserted on a (111) oriented 
GaAs substrate (on the right), the 4-fold rotation axes (dashed arrows) are killed 
in that case, emd the point group of this other composite material is 3m, which is 
that of another nonlinear material: LiNbO3. These are two artificial birefringent 
nonlinear materials. 

In the pioneering paper  of Van der Ziel[22], form birefringence was cal- 
culated directly from Maxwell's equations in the large wavelength approx- 
imation.  Another physical explanation can be given in terms of a modal  
wavefunction approach. Let us consider an infinite periodic multilayer mate-  
riM. Following aoannopoulos[2a], for a given wavevector the frequency of an 
allowed electromagnetic mode in a composite medium increases with the frac- 
tion of electric field in the low index material .  In fact, as illustrated in Fig. 3, 
the difference between the Transverse Electric (TE) and Transverse Magnetic 
(TM) polarizations arises from the continuity equations at the boundaries be- 
tween the two materials.  In the TM polarization, the continuity of the electric 
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displacement  forces the electric field to have an high value in the low index 
material .  This mode  thus has a higher frequency for a given wavevector.  

0.25-  . . . . . . . . .  TE Z o .  ° 

0 .20-  " ~ ~  

.... i _ ././_'" 

°,°1 /.... 

0 00 -I,~ , , 

0.0 0.2 0.4 k Electric field 

Fig.  3. Dispersion relation for an in-plane propagation in a periodic composite 
material which consists of 25% of Alox (n_~1.6) and 75% of GaAs (n_~3.5), for TM 
modes (full line) and TE modes (dotted lines). In this theoretical plot illustrating 
only the principle of form birefringence, the dispersion of the materials has been 

27r¢ neglected. The frequency is given in units of ~ -  and the wavevector in units of ~a ~, 
where d is the period of the multilayer. The physical origin of form birefringence 
appears in the mode wavefunction, pictured to the left for a frequency w = 0.13 x ~a ~ 
(they correspond to the open circles in the dispersion relation). These Bloch waves 
have been calculated using standard periodic multilayer theory[21]. The direction 
of propagation is perpendicular to the plane of the figure. Due to the continuity of 
the electric displacement eE normal to the layers, the TM mode (fnll fine) has an 
important overlap with the low e layer (Alox, in fight gray), and a lower average 
dielectric constant. The continuous TE electric field (dotted fine) has a higher value 
in GaAs (dark gray), and a higher average dielectric constant. From reference [19]. 

For large wavelengths (compared to the unit  cell), light experiences an 
effective medium.  As a consequence dispersion relations w(k) in Fig. 3 are 
linear near the origin, where form birefringence appears  as the difference 
between slopes (i.e. phase veloicities) for T E  and TM waves. In tha t  case the 
two dielectric constants  of the uniaxial composi te  mater ia l  are given by: 

eTE = '~1~1 + ~2C2 (2) 
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where ai and ei are the filling factors ( a l + a 2  = 1) and the dielectric constant 
of the two constitutive materials, respectively. These equations are analogous 
to electrical series and parallel capacitors: The charge equality C1V1 = C2V2 
between series capacitors is in fact the static limit of the electric displacement 
continuity relation for TM waves (alE1 = ¢ 2 E 2 ) ,  and the bias equality V1 = 
V2 for parallel capacitors is equivalent to the electric field continuity for TE 
waves (El = E2). 

In the dispersion diagram of Fig. 4, a simple picture of phase matching 
is given, energy and momentum conservation corresponding to the equality 
between the vectors associated with the nonlinear interaction. This is usual 
in solid state physics, for instance in the description of optical transitions in 
semiconductors, Raman or Brillouin scattering, acousto-optics, etc... 

It appears from Eqs.(1) and (2) that form birefringence (ex/2-~-- ~ )  
increases with the refractive index contrast between the two materials in 
the multilayer, as for photonic band gap effects in PCs[25,18]. Although a 
GaAs/A1GaAs multilayer structure was formerly proposed for phase match- 
ing[22], the refractive index contrast between GaAs (n_~3.5) and AlAs (n_~2.9) 
is too low to provide the birefringence required to compensate for the disper- 
sion. This is the reason why thin film layers of Alox (n~_l.6) in GaAs have 
been used to get sufficient form birefringence. Alox results from selective oxi- 
dation at 400-500°C in a water vapour atmosphere of AlAs layers embedded 
in GaAs. This technology of AlAs oxidation has emerged in the early 90's[26], 
and since then Alox has led to breakthroughs in the fields of semiconductor 
lasers[27] and Bragg mirrors[28] -again thanks to its refractive index contrast 
with GaAs-. 

To illustrate experimentally the efficiency of form birefringence phase 
matching, a DFG interaction was first demonstrated. An example of a struc- 
ture used for DFG is presented in Fig. 5, along with the three modes in- 
volved in the nonlinear interaction. The details of the experiments can be 
found in [19,29,30]. In the structure depicted in Fig. 5131], a form birefrin- 
gence n(TE)-n(TM)=0.154 has been measured for a wavelength of 1.06 #m, 
and even higher birefringences, of about 0.2, have been obtained with differ- 
ent samples. Such birefringences are sufficient to phase match mid-infrared 
generation between 3 tim and 10 l~m by DFG from two near-infrared beams. 
Note that  by increasing the width of Atox layers (as in the example of Fig. 
3), much higher birefringences up to 0.65 could be achieved, in principle. 

The DFG process (1.035 #m, TM) - (1.32 ttm, TE) ~-+ (4.8 #m, TE) 
is represented schematically in Fig. 5. The  experimental set up is simple: 
Two near infrared beams (a tunable Ti:Sa and a YAG laser at 1.32 #m) are 
simultaneously end fire coupled into the waveguide by a microscope objective. 
The output light is collected by an achromatic reflecting microscope objective, 
and the mid-Infrared DFG signal is finally measured by an 77K InSb detector. 
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Fig .  4. Phase matching is nothing but a coherent transfer of energy between differ- 
ent modes (w,k), with momentum and energy conservation. For every kind of phase 
matching, this can be illustrated by a simple picture in the dispersion relation. In 
our case of form birefringent phase matching: a) for SHG in the long wavelength ap- 
proximation (near the origin of the dispersion diagram). The first arrow represents 
the mode (w,k ~, ' r E )  and the second one the transition to the mode (2w,k ~ ,  T M ) .  
Phase matching means that  these two arrows are identical, b) for DFG the same 
kind of schematic picture applies, c) in the general case, phase matching between 
two different bands in the multitayer structure. Only the two bands of interest have 
been represented. This case is also a generalization of modal phase matching that  
has been demonstrated in waveguides. In that  case, a careful look at the overlapp 
nonlinear integral between the different modes has to be considered, in addition to 
phase matching [24]. 
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Fig. 5. DFG process in the GaAs/Alox multilayer structure, in which form bire- 
fringence phase matching was first demonstrated. Three periods of the composite 
material GaAs(325 nm)/Alox(40 nm) constitute the core of the waveguide. The 
birefringence of the composite material was engineered to compensate for the dis- 
persion arising from both the natural dispersion in bulk GaAs and the optical con- 
finement dispersion in the waveguide. The sample was grown by molecular beam 
epitaxy on a GaAs (100) substrate and consists of: 2800nm A10.97 Ga0.03 As; 1500nm 
A10.70 Ga0.30 As (waveguide cladding layers), three periods of birefringent composite 
material (40 nm Alox; 325nm GaAs)×3 and 40 nm Alox; 1500nmA10.70Ga0.3oAs 
and a final 30 nm-GaAs cap layer. The oxidation process is described in detail in 
reference [31]. The three modes involved in the DFG process are pictured together 
with their polarization ( t  for TM, C) for TE). The higher overlap of the TM mode 
with the low refractive index Alox layers is apparent, which is the origin of form 
birefringence. The arrows recall the "phase matching" momentum conservation. 
From reference [19]. 

A typical infrared output  is shown in Fig. 6 versus the Ti:Sa wavelength. This  

function has the expected ( ~ _ ) 2  shape, which is clear evidence of phase 
matching.  This kind of experiment has been the first achievement of perfect 
phase matching with a cubic nonlinear material ,  and also the first realization 
of Van der Ziel's 22-year-old proposal. 

Typical  mid- IR output  powers of 120 nW were obtained for 0.4 m W  and 
17 m W  of Nd:YAG and Ti:Sa pump powers, respectively[30]. By increasing 
pump  powers and reducing scattering losses originating from processing[30], 
this result can easily be pushed into the #W range, which is an interesting 
power level for mid-infrared spectroscopic applications. It  is worth mention- 
ing that  wavelengths up to 5.3 #m at room temperature,  and 5.6 p m  at a 
waveguide tempera ture  of 150°C have been generated[30]. 

The birefringence of the composite structure is sufficient not only to phase 
match  DFG in the mid infrared~ but also for SHG around 1.55 #m,  recently 
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Fig. 6. Mid-Infrared DFG signal as a function of the Ti:Sa laser wavelength. The 
pump powers were 0.2 mW and 1.6 mW for the YAG and the Ti:Sa lasers, respec- 
tively. This function has the well known shape of a phase matching resonance: It is a 
(~i~____~_~)2 function, characteristic of a momentum conservation in a given interaction 
length. 

demonstrated[32]. In this respect, two examples deserve a mention because 
of their great application interest: continuously tunable mid-infrared com- 
pact sources are desirable for pollutant detection in the molecular fingerprint 
region or for process monitoring; and a 1.55 pm signal can be wavelength- 
shifted by mixing it with a 0.75 #m pump, which is a function required in 
wavelength division multiplexing. 

Among the processing issues of the GaAs/Alox system, of critical impor- 
tance is the accurate characterization of near- and mid-infrared losses, due 
to absorption and scattering on the ridge inhomogeneities introduced during 
the etching process. These parameters are crucial for the successful utilisa- 
tion of this composite material in frequency conversion devices, and have 
been analyzed in ref.[30], where rather high mid IR losses (of the order of 50 
cm -1) were mainly attr ibuted to ridge sidewall scattering. Experiments are 
underway to reduce losses by improving the fabrication process and by an 
optimization of the geometrical parameters of the ridge. 

A lot of perspectives are offered by form birefringence phase-matching in 
multilayers. Let us cite some of them: 

Simultaneous frequency conversions 
Form birefringence is an example of building an artificial structure with 

the desired optical properties, that is an illustration of refractive index engi- 
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neering. It is obvious that  the large number of degrees of freedom in the design 
of the structures enables to design waveguides with several simultaneous con- 
straints. For instance it is possible to design a guide in which the doubling 
process w + w -+ 2w and the sum frequency (SFG) process w + 2w -~ 3w 
are simultaneously phase matched. Note that since two polarizations exist in 
the waveguide, modal phase matching (i. e. between guided modes of different 
order[24]) is necessary to phase match more than two waves. This novel third 
harmonic generation (THG) scheme considerably simplifies the usual THG 
method of realizing first SHG and then SFG in two different crystals. The 
possibility of phase matching these two nonlinear processes simultaneously, 
making the three waves w, 2~0 and 3co, which obey to a new system of nonlin- 
ear coupled equations, interact simultaneously. This constitutes a new type 
of nonlinear interaction. 

QWs as nonlinear material 

Form birefringence phase matching has been demonstrated using bulk 
GaAs as nonlinear material. On the other hand, the interest of GaAs, and 
especially molecular beam epitaxy on GaAs, is that it is also the material 
for QW's. As already pointed out in the introduction, band gap engineer- 
ing of multiple QW's has lead to the demonstration of the highest X (~) ever 
reported[7]. In principle, using intersubband-based X (2) inside such phase- 
matched structures is readily feasible by growing asymmetric QW's in the 
core of a GaAs/Alox structure. Due to the huge nonlinear susceptibilities 
demonstrated in these asymmetric QW structures [7], this may lead to highly 
efficient devices. For such a purpose, deep QW's for high energy intersubband 
transitions have to be choosen (see for example ref. [33]), to avoid the absorp- 
tion range of Alox. A careful calculation of the nonlinear efficiency, taking 
into account the selection rules for transitions between confined electronic 
levels in semiconductor heterostructures, has to be considered. 

Optical parametric oscillator on a GaAs chip 

Once DFG has been demonstrated, it seems obvious that  parametric flu- 
orescence can be observed in the same structures. From this, to obtain an 
OPO with these waveguides is just a matter  of reduction of losses in the mid- 
IR. A lot of processing work is necessary to reach this purpose, especially 
a precise measure of optical losses in oxidized AlAs. This is a crucial point, 
very difficult to measure with a good accuracy since this material exists only 
in thin layers and small surfaces. 

Non-critical phase matching 

Another consequence of the large number of degrees of freedom in the 
design of the structures is the possibility to choose, among all the possible 
phase-matched structures, the one with the widest phase matching resonance. 
Relaxing the phase matching condition is practically important  to reduce the 
device sensitivity to e.g. temperature and pump wavelength. A preliminary 
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calculation shows that  to achieve a non critical phase matching for the DFG 
process w3 = wl - ~2 (that is to vanish the phase mismatch at the first order 
around the resonance), one has to minimize the quantity 

dn3 dnl 
F (n l (~ ) ,  n3@)) = n3 - n1 +,o3-G-  ~ - ~1 d---2 (4) 

, among all the possible structures that  are phase matched (i.e. with n 3 a ;  3 = -  

nlWl -- n2w2). Again, this is a refractive index engineering problem, with two 
constraints (the phase matching and its non-critical character) instead of one. 

Another way to get a relaxation of the phase matching condition: Insertion 
of optical amplification in the nonlinear structure 

As previously stated, one of the major advantages of GaAs/Alox compos- 
ite nonlinear material is its fabrication on a GaAs substrate, fully compatible 
with the GaAs technology, with the possibility of integration with the GaAs- 
based devices developed in the field of optoelectronics: in particular the very 
efficient GaAs-based QW lasers, which represent the major  item of the semi- 
conductor laser market. The introduction of QWs with population inversion 
and gain in a phase-matched nonlinear waveguide has useful properties. In 
particular, it was shown[34] that  merging optical amplification and three- 
wave mixing can strongly relax the phase-matching condition for DFG. 

Self-pumped optical parametric oscillator: A Q W laser OPO 

The introduction of inverted QWs in the nonlinear structure would be 
of great interest if the optical gain could be pushed above lasing threshold. 
In such case, the structure would be basically a semiconductor laser, with 
intracavity phase-matched parametric fluorescence. If losses at the parametric 
frequencies are lower than the parametric gain, the structure is an OPO which 
provides its own pump internally. The full OPO system, including laser pump, 
nonlinear material and cavity, would be integrated in the same cavity on 
a semiconductor chip. This would represent the smallest OPO system ever 
realized, and also an alternative way to extend the range of room temperature 
c.w. semiconductor lasers in spectral regions where they are not yet available 
(e.g. between 3 and 4 pm). 

Several problems need to be solved, however, before the realization of 
such a device : losses have to be reduced (this is a processing issue) ; since 
the lowest wavelength in the nonlinear interaction must be TM polarized, the 
QWs have to lase in the TM polarization, which is possible but not usual. 

Another relevant issue is the competition between QW gain and the losses 
constituted by the parametric fluorescence, which alter the spectral gain and 
hence the laser wavelength. Such situations have been studied by Khurgin[35]. 
Finally, for electrical pumping, the insulator character of Alox also represents 
a serious problem. 
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2.2 2D p h o t o n i c  c rys ta l s  o f  X(1): F o r m  b i r e f r i ngence  in a r r a y s  o f  
cy l i nd r i c  a i r  holes  

The composite material GaAs/AIOx bears a considerable drawback: it only 
exists in thin layers (a few microns), due to its fabrication by molecular beam 
epitaxy. Considering the great success met by periodically-poled Lithium 
Niobate as it became technologically available in thick samples rather than 
waveguides[36], it would be very interesting to obtain a thick form-birefringent 
material. One could focus greater energy onto the structure and obtain higher 
nonlinear efficiencies. In this respect, the study of form birefringence in 2D 
materials may represent an alternative way. The modeling of form birefrin- 
gence in a 2D set of air cylinders in GaAs, for waves propagating in the plane 
perpendicular to the cylinders, ressembles the calculation of the dispersion 
relations in photonic band gap materials. Form birefringence appears again, 
in the long wavelength approximation, as the difference of slopes between 
the TE and TM dispersion relations, which have been calculated for years 
now[25]. In our case, however, the photonic band gaps of the material have 
to be avoided, since we want light to propagate, and the dielectric structure 
is designed only for phase matching purposes. Calculations show that  it is 
possible for instance to phase match the SHG process of the CO2 laser radi- 
ation at 10.6 #m with air holes in GaAs, of diameter 0.2 #m, located on a 
triangular lattice of period 3 pm.  Such a material is very difficult to obtain 
with the state-of-the-art of GaAs technology (especially in large thicknesses, 
lets say 100 pro), but very impressive structures have been demonstrated in 
macroporous Silicon[37], with these typicM dimensions. Silicon has unfortu- 
nately no X(2); however phase matching in a 2D form birefringent material 
could also be demonstrated for a third order process, such as third harmonic 
generation of a CO2 laser. Calculations of sum-frequency phase matching in 
2D photonic lattices can be found in [38]. 

3 P h o t o n i c  crysta ls  of X (2) 

3.1 1D p h o t o n i c  crys ta ls :  Quasi  phase  m a t c h i n g  

Since we are dealing with second-order optical processes, the materials are 
described by two susceptibilities X (1) and X (~). They are then two ways to 
make a PC; with a periodic X(]) or X(2), respectively. The first part was 
devoted to the description of PCs of X(1), this second part will describe the 
possibilities of phase matching in structures with a periodic X (2). 

We focus now on PCs of X (2), where the linear susceptibility is supposed 
to be homogenous. 1D crystals (e.g. multilayers (X(2),-X(2))) will be first 
presented. These structures are well known in the field of nonlinear optics 
and are very efficient materials. Note that the light is propagating perpen- 
dicularly to the layers and not in the plane of the layers, on the opposite to 
form birefringence phase matching presented in the first part. The purpose is 
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anyway the same: phase matching the nonlinear interaction. This particular 
scheme is called quasi phase matching (QPM). 

QPM was first proposed in a seminal paper of Bloembergen and co- 
workers[2], to solve the problem of phase mismatch. The principle of QPM 
is the following: We know that due to the dispersion, the phase mismatch 
between the interacting waves reduces the useful interaction length for fre- 
quency conversion to the so-called "coherence length", which is inversely 
proportional to the dispersion and equal to Lcoh = A~/4 (n 2~ -- n ~) for SHG 
of a wavelength )~ in vacuum. QPM consists of reversing the sign of the non- 
linear susceptibility of the material every coherence length. The consequence 
is the change of sign of the nonlinear polarization. This switches also the sign 
of the generated harmonic wave, and this change of sign exactly compensates 
for the destructive interference coming from the dispersive propagation. The 
constructive build-up of the generated wave occurs then on the entire length 
of the QPM structure, increasing the overall energy conversion. The principle 
of QPM is presented on figure 7, and an excellent review about this topics 
can be found in [39], with a lot of references about different materials that 
have been used for QPM. 

Various demonstrations of QPM have been performed, with different ma- 
terials. Among them, Periodically Poled Lithium Niobate (PPLN)[40,41] or 
periodic poled KTP[42] have become some of the most attractive nonlinear 
materials for OPOs. QPM structures using semiconductors have also been 
demonstrated: stacks of GaAs plates have been used, obtained by wafer bond- 
ing[43]. In that case, several substrates of thickness one coherence length (for 
example 108/~m for frequency doubling at 10.6 #m) are bonded, two suc- 
cessive substrates having opposite X (2) orientations. GaAs waveguides with 
periodic (100) and (-100) oriented zones were also recently demonstrated[44]. 

Let us stress the fact that a lot of analogies can be found between Bragg 
mirrors or more generally multilayer structures used for linear optics (linear 
phase matching) and QPM structures used for nonlinear phase matching. It 
was shown that in periodic multilayer structures the reflections bands depend 
on the Fourier transform of the X(1) function, and this was used for the 
formulation of a Fourier transform method for optical multilayer design[45]. 
For instance, the width of the n th gap of 1D photonic band gap material is 
proportional to the value of the fundamental spatial component of the Fourier 
expansion of the dielectric constant in the multilayer. That is why the even 
order gaps of a perfectly balanced Bragg mirror (x,4x-) vanish[21]. From the 
point of view of QPM materials, the fundamental equation of the evolution 
of the harmonic field in a X(2) material is given by[4]: 

dE2,~ 
dz oc (E~) 2 X(2)(z) exp(iAkz) (5) 
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Fig.  7. Quasi phase matching principle: The QPM structure (top) is a periodic 
structure of X (2) , as proposed in the pioneering reference[2]. The waves are travel- 
ling perpendicularly to the layers and the thickness of the X (2) domains is equal to 
one coherence length of the nonlinear process. The basic principle of QPM is ex- 
plained in the schematic picture. The thick striped arrows represent the nonlinear 
polarization, fixed in the scheme rotating at 2k ~. It creates a SH field in quadra- 
ture (striped triangles at the origin). The thin dashed black arrows represent the 
SH field, which is dephased with respect to the polarization during the dispersive 
propagation. After one coherence length, the SH field decreases back to zero, be- 
cause the direction of creation of the second harmonic wave (triangle) is opposite 
to the harmonic wave itself: a destructive interference occurs (left picture). Right 
picture: QPM consists of changing the sign of the polarization (by reversing X (2)) 
after Lcoh. The sign of the nonlinear polarisation is changed and the interference is 
still constructive. 

F rom this equat ion it appears  tha t  the harmonic  field is the Fourier trans- 
form of the X (~) function[39]: 

E 2 X(2)(z) exp(i, kz)dz (6) 

The Q P M  principle is very clear f rom this expression: If  the )/(2) funct ion 
has a componen t  e z p ( - i A k z ) ,  the harmonic  field can grow construct ively 
on a large scale. This  exactly what  happens  in a QPM material ,  since X(2) is 

- -  7 r  periodic with a period equal to 2Lcoh, where the coherence length Lcoh -- -A-g" 
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Following these observations and this analogy between the Fourier trans- 
forms of the X(1) and X(2) functions, a lot of interesting variations from the 
QPM principle have been demonstrated: Broad band QPM structures have 
been realized (i. e. with a large tuning curve resonance) by making a structure 
with deviations from perfect periodicity[46]. By means of a variation of the 
period of the QPM grating, Arbore e t  al. have demonstrated the possibility 
of SH pulses that  are stretched or compressed relative to the input pulses 
at the fondamental frequency[47]. This is analoguous to the possibilities of 
pulse compression in Bragg mirrors obtained by engineering the dispersion 
of the reflection spectrum. Wedged QPM structures with a variation of the 
X (~) period on the surface of the sample have also been proposed, in analogy 
with "tunable" wedged interference filters[43]. 

Another analogy between Bragg heterostructures and QPM structures 
will be studied in the last section of this lecture: QPM in a 2D crystal of X(2) , 
which is the a generalization of QPM in two dimensions, as photonic band 
gap materials are the generalization of Bragg mirrors in several dimensions. 

3.2 2D p h o t o n i c  c r y s t a l s  o f  X (2) 

This last part will focus on the possibilities offered by a 2D PC of X (2) . 
Such a structure presents a space-independent linear dielectric constant, but 
has a periodic second order nonlinear coefficient in a 2D plane. Figure 8 
shows schematically an example of the structure under study: a 2D triangular 
lattice of cylinders with nonlinear susceptibility tensor ( -X  (2)) in a medium 
of nonlinear susceptibility X(~). 

In the same way as the 1D case  of a X (1) crystal is the Bragg mirror, 
the 1D case of a X(~) crystal is the QPM structure presented in the previ- 
ous section. 2D crystals of X(2) are then a generalization in two dimensions 
of QPM structures in the same way as photonic band gap materials are a 
generalization in two dimensions of Bragg mirrors. 

The first point addressed in this paper concerns the possibility of realizing 
a 2D or 3D PC of X(~). In 1D QPM structures, for GaAs waveguides as for 
PPLN, the 1D periodicity of the nonlinear susceptibility is defined by the 
design of a metallic grating. In the case of GaAs waveguides, the grating is 
used as a mask for a reactive ion etching step[44], and in the case of PPLN, 
the grating is an electrode for ferroelectric domain reversal. Though these 
techniques are very different, they both use a metallic grating, defined by 
electron-beam lithography, which defines the pattern of the QPM structure. 
Both techniques can be generalized to the 2D structure presented in Fig.? ?. 
One only has to change the metallic grating into a metallic honeycomb mask 
during the technological process. In the case of PPLN, it is necessary to 
choose a connex area for the metal (white area in figure 8), in order to apply 
easily the voltage on the whole pattern. We conclude that  2D PCs of X(2) are 
easy to obtain as a generalization of 1D QPM technology. 
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Fig. 8. Schematic picture of a 2D crystal of X (2) . The material presents a translation 
invariance perpendicular to the figure, and is invariant by translation in a 2D lattice 
(here a triangular lattice). The linear susceptibility is constant in the whole material 
but the sign of the second order susceptibilty X (2) presents a given pattern in the 
unit cell. 

Conversely, the fabrication of 3D crystals of X (2) seems to be very tricky. 
One may  imagine a complicated multistep technology with bondings, etchings 
and regrowth of GaAs, resulting in a 3D stack of domain reversals. Such a 
process, theoretically possible, is however far beyond the state-of-the-art  of 
GaAs technology. For this reason, this paper  will consider mainly 2D X(2) 
crystals. However, it is clear that  a hypothetical 3D structure would present 
analogous properties to those described here, and the assumption of a 2D 
structure in the following is not a loss of generality. 

Let us assume that  a plane wave at the frequency w propagates in the 
transverse plane of a 2D X(~) crystal, that  is perpendicularly to the transla- 
tion axis of the cylinders, of arbi trary section. Let us recall tha t  the linear 
dielectric constant is constant in the whole structure. This ensures that  mul- 
tiple reflections, leading to PBG effects, are not present. In this 2D structure, 
the problem can be considered as scalar[48], which simplifies the notations. 
For instance, in the case of a 2D PPLN crystal, fundamental  and harmonic 
waves are TM polarized, i.e. with the electric field in the translational di- 
rection. Although they are constant in space, the linear dielectric constants 
are assumed to be different at w and 2w, this dispersion being the source of 
phase mismatch.  An efficient SHG process in the X (2) crystal is obtained if a 
quasi-plane wave at the harmonic frequency is observed to increase at a large 
scale, compared to the coherence length Lcoh and to the X (2) period order. 
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By quasi-plane wave, it is assumed that  if we write the harmonic electric field 
as :  

( r , t )  = 1 E ~  (r )exp[ i  (2wt - k2~r)] + c.c. (7) 

then the classical slow varying envelope approximation applies: 

k 2~.V (E  ~ (r)) > >  V2E ~ (r) (8) 

In these equations, r -=- (x, y) is the 2D spatial  coordinate. Under this 
assumption,  the evolution of the SH field ampli tude can be written as a 
function of the p u m p  field and the second order coefficient X (2) (r): 

k 2~ .v  (E 2~ (r)) = 

-2i~-2 2 (E=)2X<2)(r) exp[i (k 2= 2k=) r] (9) 

This equation is a simple generalization in two dimensions of the 1D har- 
monic field evolution equation[4], where the derivative has been replaced by 

a gradient and (E°~) 2 is assumed to be constant. The nonlinear susceptibility 
can be written as a Fourier series: 

X(2)(r)= ~ xG.exp(-iG.r) (10) 
G E R L  

where the sum is extended over the whole 2D reciprocal lattice (RL) 1. In- 
serting this expresion in Eq.(9), the increase of the SH field appears  to be 
related to a sum of exp[i (k 2~ - 2k ~ - G )  r]. The QPM condition appears  
then as the expression of the m o m e n t u m  conservation: 

k 2~ - 2k ~ - G = 0 (11) 

For 1D QPM, the phase mismatch can be compensated in a structure of 
period d if it is equal to a multiple of the fundamental  spatial frequency of 
the structure ~[39] .  In contrast to this, QPM in a 2D PC of X (2) involves 
a m o m e n t u m  taken in a the 2D RL. The possibilities of QPM are not only 
six-fold degenerate (thanks to the symmet ry  of the tr iangular lattice), but  
new QPM orders appear  in the 2D crystal which are not multiples of the 
fundamental  QPM process, opposite to the 1D situation. Two examples of 2D 

1 In the case of the honeycomb lattice of cylinders, following [49], nG = 
4 f ~  X X (2) , where f is the filling factor of the circle in the Wigner-Seitz cell, 
and J1 the first Bessel function. For a radius R of cylinders equal to 0.38 times 
the period, we have ~G = 0.13X {2) for a [1,0] order process. This can be compared 
to ~X (2) in the case of a 1D first order QPM. Higher [1,0] Fourier coefficients can 
be obtained with a triangular lattice of hexagons instead of cylinders. 
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QPM processes are shown in Fig.2 9: the fundamental process, which involves 
the shortest possible G vector, and a 2D QPM process with a momentum 
transfer v/3 times greater, which is impossible in a 1D structure. The 2D QPM 
order can be labeled with two integer co-ordinates, given in the (G1, G2) basis 
of the RL. In Fig.9 for instance, 2D QPM processes of orders [1,0] and [1,1] are 
represented. In the case of a unit cell invariant by the symmetry  operations 
of the Bravais lattice (as for instance a triangular lattice of circular patterns), 
it is obvious that  points in a 300 sector F M - / ' K  form a complete set of QPM 
schemes, all other points in the RL playing the same role for a reason of 
symmetry.  This means that [z,y]E N 2 orders with y > 0 and z - x/rgy >__ 0 
represent all the 2D QPM processes in these structures. In the case of an 
asymmetric unit cell (as for example the graphite-like structure[50]), the RL 
and the QPM schemes are the same as above. However, the related conversion 
efficiency depends of the Fourier coefficient of Eq.(10), which depends on the 
shape of the X(2) pattern at the unit cell level, and is generally not the same 
for different vectors of equal modulus in the RL. 

Fig. 9. Reciprocal lattice of the structure of Fig. 8, with the 2D QPM processes of 
order [1,0] and [1,1] shown schematically. The efficiency of the nonlinear process is 
proportional to the corresponding 2D Fourier series coefficient, which depends on 
the unit cell filling factor, and is not represented here. The first Brillouin zone with 
the usual/ ' ,  M, and K points, is represented on the left. 
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A particularly interesting case occurs when k 2~ and k ~ are colinear, be- 
cause the interaction length is not limited by the walk-off between pump 
and harmonic waves. Such a process is obtained when the phase mismatch 
is equal to the modulus of a vector in the RL. For instance, in the case of 
a structure with a triangular lattice of period d, the phase mismatches that  
can be compensated are equal to y/x  ~ + y~ + xy x ~ ,  [x,y]E N 2. They are 

then belonging to the series (1, x/3, 2, v~,  3, 2v~...). This has to be compared 
to the series (1, 3, 5, 7,...) which is obtained in the usual 1D QPM process. 

Using some trigonometry, Fig.9 leads to: 

= 1 - -~-~) + 4 - ~ j s i n 2 0  JGI (12) 

where A 2°~ is the SH wavelength inside the material and 20 the walk-off angle 
between k 2~ and k w. More generally, this equation gives the direction of 
coherent radiation at the wavelength A 2~ for a phased array of nonlinear 
dipoles having a phase relation fixed by the propagation of the pump. Eq. (12) 
appears then as a nonlinear Bragg law, and is a generalization for nonlinear 
optics of the Bragg law. It gives the direction of resonant scattering at the 
wavelength A~ of a plane wave with vector k ~ by a set of nonlinear dipoles. 
ff the medium has no dispersion, n ~ = n 2~ and Eq. 12 is reduced to the 
well known Bragg law, which expresses the resonant scattering direction by 
a periodic set of scatterers: 

47r 
A = ~ sin(0) -- 2dsin(0) (13) 

where d is the period between two planes of scatterers. In the case n ~ = n 2~ , 
the nonlinear emission follows the same behavior as a linear scattering: In 
both cases the direction of propagation is given by the Huyghens-Fresnel 
principle, given the phase relation between the scatterers. 

The analogy with X-Ray diffraction by crystals is useful for understand- 
ing the different possibilities offered by 2D QPM. Figure 10 shows a modified 
Ewald construction corresponding to Eq.(12). This figure follows the same 
principle as the usual Ewald construction, except for the fact that  the ra- 
dius of the Ewald sphere Ik2~l is greater than the distance 2 Ik~l between 
its center and the origin of the RL. As in the case of X ray diffraction, for 
a given pump wavevector k ~', there is in general no reciprocal vector [k2~[ 
on the Ewald sphere. This means that  the 2D QPM is a resonant process, 
an "accident",  which can be obtained by varying either the angle of prop- 
agation of the pump, or the wavelength. It is interesting to note that  for 
specific angles and wavelengths several points can be located simultaneously 
on the Ewald sphere. In such a case of multiple resonance, SH beams can 
be generated simultaneously in different directions in the plane, in a similar 
way as the linear diffraction in several order beams by a diffraction grating. 
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These different beams will present anticorrelation noise properties which can 
be useful in quantum optics experiments. 

. : . - " "  ~ I~,-~ : - "  ' " -  : ""  

-- i" '" ::F i "::,:: 

Fig. 10. Nonlinear Ewald construction: The center of the Ewald sphere is located 
2k ~ away from the origin of the RL and the radius of the sphere is k z'~. The main 
difference with the usual Ewald construction is that the Ewald sphere does not 
contain the origin of the RL. If a point of the RL is located on the Ewald sphere, 
phase matching occurs for the SHG process. 

The new possibilities offered by PCs of X (2) can be classified into two 
categories: First, for a given pump  frequency w,  a phase matched direction 
in the lattice is required for an efficient SHG. In that  case, by changing the 
angle of  incidence in the structure, the Ewald sphere crosses for some angle 
a point of the KL. For this direction, phase matching occurs resonantly in a 
very similar way as a Bragg resonance in a rotat ing crystal X-ray diffraction 
experiment.  The wMk-off of the nonlinear interru:tion corresponding to this 
resonance is given by the nonlinear Bragg law (12). For a unit cell having 
the same symmet ry  as the crystal, as explained before several directions of 
propagat ion are equivalent. This can be used for ring cavity purposes. At 
variance with previous ring cavity nonlinear optics experiments[51], a ring 
cavity (having the shape of a hexagon for instance) can be designed so that  the 
constructive interaction occurs along in the entire intracavity optical path,  
increasing the final efficiency. The lower efficiency coming from structure 
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factor is overcome by the increase of the interaction length on the entire 
cavity round trip in the 2D case. 

A second application is the search of the phase-matched SHG spectrum, 
for a given direction of propagation. The X-ray analog of this kind of ex- 
periment is the broad band X-Ray diffraction analysis used in the Laue 
method[52]. The different QPM resonances are found from the scheme of 
Fig.10 by changing the radius of the Ewald sphere. It is obvious that several 
resonances will be found; this opens the possibility of multiple wavelength 
generation by SHG. It is interesting to compare this phenomenon with mul- 
tiple wavelength SHG that has been recently obtained in a quasi periodic 1D 
Fibonacci optical superlattice[53]. Multiple resonances were observed in the 
QPM SHG spectrum arising from the different reciprocal vectors G,~.,~ of the 
quasi periodic optical superlattice. The 2D RL indexing of the quasi peri- 
odic 1D structure is the fundamental difference from the usual 1D periodic 
structure, and this difference is the reason for multiwavelength frequency 
conversion. The 2D indexing comes from the fact that the 1D quasi peri- 
odic lattice is nothing but the projection of a 2D periodic crystal on a 1D 
axis. This follows the well known geometrical construction of quasicrystalline 
structures. The experiments of Zhu and co-workers[53] are thus a projection 
of a 2D )¢(2) PC experiment on one particular direction of propagation. 1D 
QPM experiments are also such a projection but the difference is the follow- 
ing: in the 1D QPM case, the propagation is on such an axis that the )C (2) 
function is periodic on this axis, whereas in the quasi periodic structure the 
projection is done on an axis with an irrational slope. All these cases are 
contained in the 2D PC of X(2), and can be obtained by changing the angle 
of propagation in the 2D plane of the material. 

This kind of photonic crystal of )C (2) is an example of a more general 
possibility, which consists of patterning a ()C(2),-)~ (2)) function in a nonlin- 
ear crystal. Holography consists of patterning a material with a X(1) grat- 
ing. By illuminating the hologram with light, an image can be created by 
linear diffraction in this grating. Here, we have presented nonlinear optical 
frequency conversion as a diffraction process. By analogy with holography, 
the nonlinear diffraction of a pump wave can be controlled by the pattern 
of X(2) in the nonlinear material, in such a way that the second harmonic 
beam is generated with a desired spatial shape. This field can be referred to 
as nonlinear holography, and opens the way to a lot of exciting perspectives. 

4 C o n c l u s i o n  

Semiconductor heterostructures form a system where both linear and non- 
linear optical properties can be engineered at will. In this paper, it has been 
shown how phase matching for nonlinear frequency conversion processes can 
be achieved in photonic crystals, with periodic linear or nonlinear susceptibil- 
ities. These heterostructures make possible frequency conversion in optically 
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Fig. 11. Nonlinear holography: The pattern of (X (2),-X (2)) in the nonlinear mate- 
rial has been designed in such a way that the SH generated wave has the desired 
spatial shape 

isotropic materials,  for which classical birefringent phase matching cannot be 
achieved. Among all the perspectives opened by these heterostructures, the 
realization of a micro optical parametr ic  oscillator in a GaAs based material  
is a major  challenge. 
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Abstract. We use the modifications of spatial mode distributions in planar 
microcavities to address the issue of light outcoupling in devices such as LEDs. 
Whereas detailed calculations are needed to fully model and optimize the structures, we 
show that a simple picture can be obtained that clarifies the main physical effects of 
the microcavity. In particular, it is shown that the cavity order m c is the chief 
parameter in determining the extraction efficiency according to rl=l/mc under some 
reasonable, simplifying assumptions. When the source in the cavity has a linewidth, 
light redistribution among both angles and wavelengths occurs and can either be a 
limiting factor for the overall extraction efficiency or a positive one in case of spectral 
narrowing requirements. In extraction-optimized systems, one gains a factor of up to 
ten on the single-face extraction as well as brightness (radiance). 

1 T h e  Issue of Light Extraction from High-Index Solids 

Although semiconductor laser diodes achieve a number of desirable characteristics for 
light emitters, including a high efficiency, adverse factors that include their cost, 
difficulty of fabrication (varying with wavelength range), threshold behavior, speckled 
spot, eye-damage risks, large thermal sensitivity, etc., limit their use. As a result, the 
three-times larger market share in compound semiconductor light sources belongs to 
the much cheaper, simpler and robust light-emitting diodes (LEDs)[1] used by billions 
in displays, infrared free-air transmission or fibre transmission in local area networks 
(LANs), while LED-based board-to-board interconnects are also envisioned. Physicists 
have nevertheless devoted less efforts to LEDs based on spontaneous emission than to 
the more fascinating lasers based on stimulated emission. As will be seen, microcavity 
effects offer a good opportunity to apply physics-based concepts to the improvement 
of LEDs[2,3]. 

Viewed as electro-optic converters, LEDs lie well behind lasers (when these can be 
made!) in terms of light extraction efficiency: Geometric optics tells us that the high 
index (n-3) of the semiconductor parallelepiped (Fig. la) containing the p-n junction in 
which light is generated is unfortunately a severe hindrance to light extraction from a 
single planar face: Assuming air as the outside medium for simplicity (nout=l), this 
leads to a small critical angle 0c = sin-l(nout/n-1)=n-l=20 ° beyond which total internal 
reflection takes place, so that the internal solid angle coupled to rays that propagate in 
air, g2=2rc(1--cos(0c)), represents only a few percents of the 4~ steradian total space 
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Fig.1 (a) The fate of internal light in a semiconductor: mostly total internal reflection. 
(b) Side collection in "high-brightness" LEDs requires a thick transparent overlayer and, 
ideally, substrate lift-off followed by bonding to a nonepitaxial transparent conducting 
substrate. 

solid angle. A simple approximation (cOS0c=l-1/2n 2) leads to the fraction 
rl= f2/4rt-1/4n 2 , which is thus the extraction efficiency at a single planar face for an 
isotropic emitter in the medium, typically only 2-3%. This isotropy is a valid 
approximation in bulk active regions of standard Double Heterostructure LEDs. For 
quantum-well-based active regions, the dominant e-hh recombination corresponds to 
electric dipoles in the junction plane, which are somewhat better coupled to the 
outside. In the following, we neglect such dipole orientation and polarization effects 
for simplicity. What we will aim at by means of planar microcavity effects is to 
widely redistribute the directions of emitted photons so that emission into the outside- 
coupled directions are enhanced to the expense of other ones. 

In practice, industrial solutions to the low efficiency issue make use of light 
collection through the sides of the semiconductor block as illustrated in Figl .b [1], 
employing transparent "window" layers (or a thick dielectric guide) above and below 
the light-emitting layer, this latter step implying a costly removal of the substrate in 
the frequent case in which it is absorbing, as is, e.g., GaAs at wavelengths below 900 
rim. These so-called "high-brightness LEDs" are however not "brighter" at the chip 
level since the increase in optical power P is accompanied by an equivalent increase in 
the source area S so that the radiance dP/dSdff2 (a conserved quantity in optics that 
limits subsequent beam transformations) remains basically unchanged, setting a limit 
to fibre-coupled transfer efficiency for example. 

Other ways to raise the extraction efficiency rest on the principle of randomizing 
the photon direction until a favorable angle 0<0 c is found. For this purpose, one may 
use an optically rough interface[4] or reabsorption-emission cycles, the so-called 
"photon recycling" phenomenon [5]. These means add demand to the absorption 
length, the internal quantum efficiency etc. Note that photon recycling phenomena are 
not exclusive of microcavity effects since both can be combined to still increase device 
performances. 
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2 P h o t o n s  in T w o  D i m e n s i o n s  

2.1 Modes and Light Emission 

In the other lectures of this Volume (by Savona, Fabre, Ho, etc.) the modifications of 
photonic modal density in microcavities of various dimensionalities have been 
discussed. In particular, spontaneous emission is described as the transfer of a quantum 
of energy from an oscillating dipole (of an atom or an electron-hole pair) to modes of 
the electromagnetic field. In the quantum picture, vacuum mode fluctuations are 
responsible for the spontaneous emission process. The main effect of  planar 
microcavities we are concerned with is that the amplitude of some modes at the emitter 
location are much larger than the others, thereby favoring emission in privileged 
modes, i.e. directions, an anisotropy that can benefit to light extraction. In terms of 
the Fermi Golden Rule, the total density of final photon states p(0)) at the dipole 
frequency o) is not necessarily much changed (see e.g. Ref.[6, 7]), but the squared 
matrix element M 2 of some modes is much larger than that associated with other 
modes. 

The perfect two-dimensional cavity of thickness L, index n, uncoupled to the 
outside world is a limit case where modes are rigorously discretized along the normal 
of the cavity, according to kzm=mrdL, with a field amplitude E o~ sin(kz m z) at the 
location z of the dipole (Fig.2a). Along the cavity plane, the in-plane wavevector k//is 
a good quasi-continuous variable (in the "large box" limit) so that, denoting k = no)/c 

(a!..,... k z ----~L, 2rdL, 3rd~,.. (b) 

' .o L ~ " ~ / /  

I 1 I 

m=l m=2 m=3.. 

(c) Density of states ~ 2D 

,.. " . "  . 

i~ ~ 

branch cut-off 

(9 × constants 

Fig.2(a) The planar ideal cavity and its mode profiles m=1,2,3 .... ; (b) the dispersion 
relation of branches m=1,2,3... ; (c) the density of scalar photons states in 2D (bold line), 
3D (thin line) and the branch individual contributions, the same for all m (dahsed lines). 



396 

(c=light velocity), the angle 0 m of a mode at frequency co can be conveniently defined 
as cOS0m=kzm/k=mr~c/nLc0 . Modes are grouped by branches indexed by m, each 
branch having the simple dispersion relation ¢o=(c/n)[(kzm)2+k//2] 1/2=C0m(k//) (Fig.2b). 
They have a cut-off frequency O)rn(0). We will assume in the following that we work 
above the cut-off of the cavity, o)>o)1(0 ) so that emission couples at least to one mode 
in our scalar picture. Here, M 2 is simply zero for all directions except the discrete 0m'S. 

A very important feature of these branches (which we will call also modes for 
simplicity) in our scalar picture is that their densi ty-of-s ta tes  (DOS) 
pm(CO)=dNtdo3=(dN/dk//) x (dkH/dco) is independent of the branch and simply 
proportional to o), reading 9m(eO)=Pl(C0)=Ao)n2, as a basic calculation shows. The 
total DOS O2D(C0) is the sum of the individual Om(~0) up to m=m c, the largest integer 
such that 03m(0)<o), and can be simply written 92D(C0)=mcAcon 2. We term mc the 
cavity order, a number which depends on the frequency (wavelength) of interest (It is 
also the number of half-wavelengths (L/2n) that fully fit into the cavity). 

The resulting 92D(O)) is illustrated in Fig.2c. In this figure, the dashed lines that 
prolong the bold segments illustrate the weight of each branch. When a cut is made at 
a given 0~, one readily sees that all the m c branches have the same weight, 1/m c. One 
also sees the relationship between 02D(03) and the familiar 3D photon DOS 
P3D(O))-n30) 2 (thin line). 

It is clear from the comparison that, except below or around the cavity cut-off 
¢o1(0) where scalar approximations are much too drastic, the total DOS may not be 
changed by large factors in a planar cavity: the ratio P2D(C0)/P3D((0) (a kind of "Purcell 
factor") does not shift from unity by more than a quantity of order l /m c (see e.g. 
Brorson's work [8,9] for mode-counting arguments when taking polarization into 
account). Hence, no important lifetime changes are expected for emitters in planar 
cavities of some thickness. The main effect is the redistribution among discrete angles 
corresponding to cones in the 3D space (modes, branches), with an identical DOS in 
each discrete direction. 

An equal DOS does not mean an equal emission however: the matrix element M 2 
in the Fermi Golden Rule is essentially the squared field amplitude E 2 oc sin2(kzmz). 
The quantity ~rn(Z)=2 sin2(kz m z) is also known as the antinode factor. It tells us 
whether the emitter stands at a node of mode m (~m(Z)=0, no coupling) or an antinode 
(~rn(Z)=2, optimal coupling), or in between. For thick enough emitting layers, kzmz 
will span more than rt within the layer, and the z-averaged antinode factor <~m(Z)>z 
tends towards unity. 

The emission is thus essentially redistributed among the m c branches according to 
~m factors. It is unfortunately impossible to favor one ~rn to the expense of all others 
as soon as m c > 3. One may check by examining the canonical case z=L/2 that upon 
averaging on m, one has <~m>m =1. This remains true in most other useful cases (the 
limit case z<<)~/4 is more subtle, as all ~m vanish like z2(m/mc) 2, but often 
unrealistic), so that we may write when summing over the m c modes in which 
emission takes place : Z~j---m c. 
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Fig.3 (a) An emitter radiating two waves in a planar cavity that emerge after undergoing 
multiple-beam interferences. Both series interefere in the far-field.(b) Scheme in the k//-kz 
plane to quantify emission in the direction 0 with the escape cone; on the left is the Airy 
factor as a function of kz. 

The fraction of emission 1]j radiated in a given mode j now simply reads : 

~'j ~'j _ antinode factor 

rlJ - E ~m mc cavity order 
(1) 

This fraction is at most 2/m c. To discuss the trends on extraction efficiency, we need 
to couple this cavity to the outside world. We wilt see that most of the ingredients 
defined above still hold and that extraction is enhanced whenever a single emitted mode 
lies in the angular range [0, 0c]. 

3 The Fabry-Perot Cavity with Few Modes 

3.1 Loss less  M i r r o r s  with  Finite  T r a n s m i s s i o n  

Coupling of a strongly resonant cavity mode to the outside continuum is treated 
quantum-mechanically by introducing "quasi modes" in Savona's lecture. Here, we 
retain a simpler classical ansatz introduced by Kastler [ 10] to address the modification 
of spontaneous emission for atoms emitting into a Fabry-Perot cavity (Fig.3a). 

The source emits rays that interfere before being collected in the far-field, 
provisionally in a medium of the same index as the cavity so as to avoid guided 
modes. Two series of rays add in a given outside direction (above the cavity, z ---> +oo) : 
One is initially emitted at 0 (kz=k cos0), and the other at 7z--0, (kz=-k cos0). Each 
undergoes multiple-beam interference that classically leads to the well-known Airy 
function, Airy = I 1-rtr2exp(2iO) 1-2 whose properties are conveniently cast into the 
cavity quality factor Q that measures the maximum of this function and the peak 
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relative width via Q-I _ Am/re. The far-field intensity E 2 normalized to the no-cavity 
case Eo 2 is just (E/Eo)2=TlxAiry for the first series (Notations tt, Tl, rl, R I= I -T I ,  
and t 2 etc.) have their obvious meaning from Fig.3, 2 0 is the round-trip phase 
2d~=2kzL). The second series is reflected on the bottom mirror, hence a phase factor 
r2exp(2ikzz) ; the overall far-field intensity thus reads : 

EI~ 
r~r 2 exp(2t¢)] 

k 2. × 2 × ½11 + r z exp(2i  zz) I (2) 

Noting that the right-hand factor may be written in the limit r 2 = - I  

½ll- exp(2ikzz)[  2 = 2[½[exp( - ik~z  ) - e x p ( i k ~ z ) ] l  2 , it is seen to retrieve the antinode 

factor 4(z)=2sin2(kz z).  

The left hand Airy factor peaks for 20 multiple of 2r~ (assume rlr2 >0) : in the 
limit rlr  2 =1, one retrieves rigorous discrete modes m=l,2,...up to the cavity order 
m=m c , the mode with the largest allowed kz (keep in mind that kz<k=no/c since our 
emitter has a given frequency!). Equation (2) provides us with a convenient way of 
dealing with an out-coupled planar cavity with the same concepts as those of the 
uncoupled cavity : modes (say, resonant angles), characteristic of the cavity, and 
antinode factors which tell where the emitter lies in each mode profile. 

Note that the Airy factor plays its enhancement/inhibition role whatever 4. If an 
emitter is located close to the node of a resonant mode (4--~0), but emission is 
monitored in the very direction of this mode (where the Airy factor is maximum), a 
fair amount of light can result from the compensation between both factors. For 
example, if one wants to suppress emission in a resonant mode be low the no-cav i ty  
level  by proper location of the emitter, one requires an accuracy on the emitter position 
z much better than ~,/Qn. This is to be contrasted with the same kind of "inhibition" 
experiment carried out for a single mirror R2=l (RI=0), in which case diminishing 
emission below the same no-cavity reference level "only" amounts to requiring 4<< 1, 
i.e. an accuracy much better than L/2n. 

The scheme of Fig.3b is useful to quantify emission from a source of given k in a 
given solid angle (we assume R2=l to collect light only on one side) : For this 
purpose, we note that the elemental solid angle (ring) subtended by dO around 0, which 
reads d~=2rcxd(cos0), is proportional to dkz=kxd(cos0). This means that the amount of 
emission in a given cone such as the escape cone [0, 0c] of interest for extraction 
efficiency is given within a constant factor k/27z by the shaded integral below the Airy 
function on the left between kz= k cOS0c and kz- k. The quarter circle of radius k is 
helpful in visualizing the associated angles. This picture helps us finding what are the 
reasonable requirements on the Airy function that will provide extraction efficiency 
enhancement at the smallest cost. 

Finally, one may be surprised that in this scheme, an angle-independent 
reflectivity is used (Airy peaks have the same width). Actually, beyond 0c, guided 
modes (and, in DBR systems, leaky modes) can occur as the reflectivity is a strongly 
angle-dependent 



399 

(a) ) f  extracted to air (b) 

. . . . . . . . . . . . .  ed l mo 

 /'mo.e,I A'ry 
: ~ : ~ ~ _ - ~ - ~ l  I Ipeaks 
: l ~ o ~ ~ - [ J  J 

- . . . . . . .  r ~ k / /  - -  

/ SINGLE 
extracted 
mode 

g u i d e d  

' m o d e s  

¼ mc 
Airy 

peaks 

Fig.4 (a) Macro-cavity with mc>>2n 2 ; (b) micro-cavity with rnc<<2n 2 and a single mode 
in the escape cone. 

quantity. However, we will not need the detailed contribution of all modes 
beyond 0c but only their sum. Given the basic fact that, within simplifying 
assumptions on the ~'s, these modes have the same weight (the DOS argument), we 
need not know about their detail. This statement is further confirmed by exact 
simulations [3]. 

3.2 Micro- Versus Macro-Cavity 

Let us first assume that the cavity Q is large enough for the Airy peaks to be narrower 
than the escape window [k cOS0c, k]. The story of the extraction efficiency then 
becomes a mere mode-counting issue for which one parameter is the cavity order mc 
and the other the relative width of the escape window (k - kcos0c)/k=(1-cos0c)= 1/2n 2. 
Given the equally spaced Airy resonances, l tm c in relative terms and their basically 
identical weight, if mc>>2n 2, there are many Fabry-Perot modes in the escape 
window, but still much more below (Fig.4a), in a ratio (hence an extraction efficiency 
TI) which is asymptotically the relative size of the escape window 1/2n 2 : we just 
gained a factor of two over the no-cavity case ('q=l/4n 2) due to the back mirror. Of 
course some other phenomena among which spectral narrowing and brightness 
enhancement (see below) already takes place as emission is strongly redistributed into 
the Fabry-Perot rings [ 10]. 

But extraction efficiency 1] is not significantly enhanced. If, on the contrary, we 
have few modes, mc<2n 2 (cavity order less than -20  in a typical semiconductor), we 
have at most one mode in the escape window while all the (mc-1) others are below 
(Fig.4b). This is the microcavity regime. The extraction efficiency rl is then given by 
eqn. (1) where ~j has to be the antinode factor of the only outcoupled Fabry-Perot mode 
(~j-~out). Even for a thick source layer for which <~>z=l, we have rl---1/m c, i.e. we 
retain most of the micro-cavity effect even with a random emitter location. Below 
mc=2, of course, most approximations made become too drastic (starting with the 
meaning of an average !) and (1) is not valid. But for many useful cases, DBR mirrors 
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Fig.5 (a) Optimal position and sufficiently narrow width of the Airy peak in the escape 
window ; (b) corresponding emission pattern peaking at oblique angles of the detuned 
microcavity. 

increase the cavity order mc up to values of at least 3, for which (1) is again valid. The 
formula tl=~out/m c for a micro-cavity is the chief result of this simplified approach 
that emphasizes the benefit of a small cavity order. 

3.3 Monochromat ic  Extraction: Which Mirrors? 

We now discuss the peak central position and width of the outgoing mode. Firstly, 
since the peak has some width, it should be centered in the escape window in terms of 
kz to maximize outgoing light (Fig.5a): denoting 0o the resonant angle, this means 
OS0o=l-1/4n 2, that is 0 o = 0 c / ~ .  Translated to air by Snell's law, this gives an 
incidence of 45 °. An optimized microcavity LED will not have its emission maximum 
at normal angle, which would truncate one half of an Airy peak ; in other words, there 
has to be a sizable "detuning" to oblique angles (Fig.5b). 

Secondly, what is the cavity Q, or in other terms the R1R2 product, needed to 
achieve tl=~out/m c ? For this, one may use an analytically integrable Lorentzian 
approximation of the Airy function around resonance to see that about 80% of the peak 
area is contained within those points at one tenth of the peak value. Applying this 
criterion in the case r2=l [2], one finds a very simple result: 

R l _> 1-mc/n 2 (3) 

This result could have been partly predicted using the relative peak width formula 
1/Q=l/Fmc where the cavity finesse F basically scales like (l-R1) -1 in our approach. 
Fitting most of the peak into the escape window means 1/Q < 1/2n 2, i.e., taking the 
inverses, Fm c < 2n 2 , which gives a form akin to eqn. (3) by rearranging the factors. 
Note that in most practical cases, R t needs not be larger than 50-80%. This is to be 
contrasted with reflectivities in excess of 99.5% required for vertical laser operation 
(VCSELs) for which the issue is not where a photon is redirected, but how to 
compensate the small gain per round-trip intrinsic to a VCSEL geometry. 
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3.4 Real-World Microcavity-LEDs: Metallic and DBR Mirrors 

We could not, in the present simplified framework, take losses into account. In 
general, one cannot neglect losses of metal mirrors at optical frequencies, typically in 
the 20% range (but reaching in extreme cases between 3% to 70% ) [2, 3]. Let us just 
say that they will limit the cavity Q and that they are one more reason to avoid too 
high reflectivity mirrors which would cause photons to be absorbed during the extra 
round-trips instead of being extracted : in many cases, the point of vanishing return 
occurs when losses per round-trip are of the same order as the output mirror 
transmission [2]. 

The other type of mirrors also used are DBR stacks of semiconductors that can be 
made reasonably lossless and conductive. However, they increase the effective cavity 
size as explained in Savona's notes. In half-wavelengths units, this increase is n/2An 
per DBR mirror, where An is the DBR index step, and n, their average index, is most 
often close to the cavity index due to material epitaxy considerations. The cavity order 
to be used for a microcavity with two similar DBR mirrors is now mc=mo+n/An, 
where m o is the order of the bare cavity (for example, mo=2 for the so-called "lambda- 
cavity" of many DBR-containing microcavities)[2, 3]. One might be surprised that 
such a simple treatment is sufficient to treat the many complexities of DBR stacks 
(leaky Bloch modes, tunneling, total reflexion effects, etc.) In the simplest terms, the 
reason why such a simplicity is possible is that the power in all these other modes 
remain quite constant and only the power in the resonant outcoupled mode has to be 
evaluated, a power given by the area below the Airy peak when plotted vs. kz. This 
area (more exactly its inverse) is indeed measured by the increased cavity order. 

This increased order is a penalty for extraction efficiency, so that one may wonder 
whether it compensates the lower losses. In practice, detailed analysis shows that it is 
rather optimum to use a hybrid cavity with a metal mirror on one side and a DBR 
mirror on the other side. 

The IMEC group in Gent has achieved within the ESPRIT SMILES Project 
impressive performances at 980 nm: ~1=23% total conversion efficiency [11-13]. Our 
simplified estimate for their system (An=0.5, n=3.5, too=2) is mc=2+3.5/2/0.5=5.5 
and, with 4=2, we predict up to 2/mc=35% extraction efficiency in a lossless, 
monochromatic case, and with 100% internal QE, all optimistic assumptions that 
mostly explain the discrepancy, with some room for photon recycling as well [14]. 
Work at other wavelengths is pursued actively, in particular in the ESPRIT SMILED 
project. 

For these various systems, the crucial DBR parameter is its materials index 
contrast, as it dictates the penalizing increase in cavity order. In this respect, the advent 
of "AIOx"-containing DBR (oxidized AlAs) with a step An=2 instead of An=0.5 for 
AIAs/GaAs certainly enhances the performances of some of the GaAs LED families. 
One should however note that for index contrast An> 1, the simple formulation n/An 
given above for the DBRs penetration does not hold any more, especially in our case 
of interest, when the variation in kz stems from an angular variation. Detailed 
simulations [3] give the exact enhancement as less than what the naive n/An 
formulation predicts. On the other side of the index contrast spectrum, many material 
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families (quaternaries at 1.3 and 1.5 ktm, visible 630-550 nm AIGalnP LEDs .. . .  [1]) 
feature rather low An's, of  the order of  0.2, which are a severe hindrance in going to the 
microcavity regime mc<2n 2. 

4 The Impact of Source Linewidth 

In the ideal uncoupled planar cavity of §2, where modes are fully discrete, each 
wavelength ~, is emitted at a different angle 0 following the dispersion relation 
(o(k//) = o~(k sin0) with k = n 2 ~ , .  The finite reflectivity of actual microcavities allows 
an angular spread for each wavelength, given for internal angles 0 by A(cos0)=Akz/k ~ 
Q-1 

moderate natural spectral width (QM>2n 2) 
R e f l e c t i v i t y  > ~ 9 5 %  

(b) 
R e f l e c t i v i t y  ~ 5 0 - 8 0 %  
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Fig.6 Spectral effects (a) quasi-monochromatic c a s e  Q < < Q M  , light output is defined 
chiefly by the cavity characteritics; (b) polychromatic case Q>>QM , spectral narrowing 
occurs and different wavelengths emerge in different directions. (c) for QM<2n2<Q, some 
wavelengths are not allowed to escape, an intrinsic limit of the planar cavity. 
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Consequently, there are two regimes : if the material's quality factor QM (the 
inverse of its intrinsic spread in emitting wavelength A,~/~.=QM -1, a terminology used 
e.g. in Yablonovitch's lecture) is much larger than the cavity Q (Fig.6a), we are in the 
quasi-monochromatic regime discussed above and "q is effectively ~ut/mc if losses are 
neglected. 

Conversely, the material may be substantially polychromatic, QM<<Q. In this 
case, the cavity redistributes the emitted wavelengths at different angles as discussed for 
the ideal cavity. In a given direction, a spectrum of width Q-1 << QM-1 is collected 
and spectral narrowing occurs [15] (Fig.6b). However, it may very well be that the 
large Q used to achieve this effect has degraded the overall (angle-integrated) extraction 
efficency due to, e.g., losses. In addition, if one looks at the radiance with a 
wavelength-integrating detector, there is also no more gain above Q=QM since what is 
gained in spectral power density is lost in spectral narrowing. Therefore, the regime 
Q>>QM is only of interest when one needs spectral narrowing, for example to limit 
chromatic dispersion at high bit rates [ 15] 

A last issue that is critical in long-wavelength system is that below QM=2n2-20, 
the source is so broad that a microcavity with a Q of the same order or larger (as would 
result from the "minimal" choice of Eqn.(3)) redistributes wavelengths in angles that 
necessarily go beyond the escape cone (Fig.6c): a planar cavity cannot provide 
simultaneous resonant escape to wavelengths differing by more than 1/2n 2 in relative 
terms. It is then necessary to revisit our approach [2,3}. From a practical point of 
view, the epoxy used in packaging provides some relief to this linewidth limit since 
escape to epoxy is accounted for by replacing 1/2n 2 by nepoxy2/2n2: the linewidth limit 
is then increased by a factor of more than two (nepoxy=l.5). 

5 Conclusion 

It might be thought that the effect on light emission of a 2D microcavity of moderate 
order is negligible as the overall DOS is almost unchanged (no "van Hove 
singularities" in P2D(O))), and therefore the lifetime also. However, the effect of 
redistribution among emission directions does lead to a major increase of extraction 
efficiency, at least one order of magnitude, as demonstrated by Gent's team [11-13]. 
The simple picture drawn here gives the basic physics of this increase, explaining the 
threshold cavity order and the fundamental 1/m c behaviour of extraction efficiency 
beyond this threshold. 

Transfer of microcavity concepts to industrial LEDs is in principle easy as the 
standard planar technology is retained, in contrast with a number of alternative 
solutions such as outcoupling gratings or roughened interfaces. In many existing 
semiconductor systems, the material properties allow mirrors with sufficiently small 
penetration length to attain at least 10--20 % extraction efficiency. 

Radiance (brightness) is also increased in numerous cases, which certainly 
constitutes an advantage for coupling to fibers. Quantifying the exact advantage for 
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classes of applications in which the spectra and/or the exact solid-angle to couple to are 
important is beyond the scope of these short notes. 

However, let us remark that the above picture of Fabry-Perot modes also tells us 
that there are some limits to planar cavities for these more demanding requirements. 
Let us examine, for example, coupling to fibres with numerical aperture 0.5-0.2. In 
such a case, an escape cone much narrower than 27z is required, which can be translated 
as if the material index n were multiplied by typical factors 4-25. Conditions detailed 
above for the microcavity regime to appear then become much more stringent: consider 
the case QM~10 and the linewidth limit set by the modified factor 2n2x25 of the order 
of 500 instead of 20 : the planar cavity cannot redirect such a large spectrum in such a 
narrow cone, with a discrepancy of a factor 50! In this view, one should consider in the 
future what added benefit could then be drawn from the peculiar DOS of 1D and 0D 
photon systems (Photonic Band Gap, Photonic wire...), an approach which challenges 
both technology and physics. 

Nevertheless, while planar microcavities are basically well-understood, it does not 
mean that nothing is to be done : implementation of the concepts to various 
material/wavelength situations and the search for the physical limits of planar cavities 
should well lead us into major achievements, both in the market place and in the new 
physics areas opened by high efficiency emitters such as single photon generators. 

The present work is supported by the ESPRIT Basic research Project SMILED. 
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Abstract. We present measurements of two-dimensional photonic crystals in a 
waveguided geometry, using photoluminescence from emitters inserted in the guiding 
heterostructure as an internal light source. A complete set of measurements is given, 
including quantitative evaluation of the transmission, reflection and also diffraction 
coefficients of the samples. Their behaviour is shown to follow mostly the pure 2D 
theory. Capitalizing on the measured properties, we fabricated one-dimensional 
cavities. The cavity modes are probed through transmission measurement. The 
measured quality factor leads to an estimation of the reflectivity of the mirror of the 
order of 95%. We also designed and fabricated disk cavities surrounded by circular 
Bragg mirrors. The resonances are probed by exciting the photoluminescence of 
quantum dots placed inside the cavity. Resonances with quality factors up to 650 are 
found corresponding to the confined Quasi-Radial Modes. 

I Introduction 

The concept of Photonic Crystals (PCs) raised a lot of interest in the elapsed decade 
because these crystals, when properly tailored, have the unique property of creating a 
zero density of states (DOS) over a range of energies called the photonic bandgap [ 1,2]. 
This property could open the way to the much desired goal of controlling the 
spontaneous emission of an emitter if it is placed into a cavity surrounded by such a 
photonic crystal [3]. The simplest consequence of the zero DOS is the vanishing 
transmission at the bandgap energies, at which light propagation is forbidden. 

However, three-dimensional (3-D) PCs have proven very difficult to fabricate at 
visible or near infrared wavelengths i.e. at typical useful sizes of a few hundred 
nanometers [4]. On the contrary, 1-D and 2-D PC are within reach using present 
microelectronics technology [5,6]. There is however a price to pay, as 3-D structures 
are needed for a full control of light in the whole k-space. An alternative way of 
controlling an already large fraction of the 3-D solid-angle is to combine 1-D and 2-D 
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Fig.1 - (a) Schematics of a hybrid microcavity surrounded vertically by 1-D planar Bragg 
mirrors and laterally by 2-D photonic crystal (b) Controlled solid angle is shaded: The two 
polar calots are controlled by the 1-D vertical microcavity, while the equatorial belt is 
controlled by the lateral 2-D structure. 

approaches: a planar microcavity would provide the vertical confinement in a given 
acceptance cone, while a 2-D PC would then control the lateral propagation of light, 
e.g. in guided modes (Fig. 1). 

Planar microcavities are already the subject of numerous studies [7]. In the 
following, we will rather focus on 2-D PCs. We will present quantitative 
measurements of the optical properties of 2-D PCs, and test the validity of the purely 
2D theory on real samples, in the presence of a waveguide in the third dimension. We 
will then present results on cavities, confined with 1-D and 2-D-like photonic bandgap 
materials, capitalizing on the measured basic parameters to design proper cavities. 

2 Designing 2-D photonic crystals 

Many calculations have been performed on 2-D PC systems, due to their simplicity 
[8,9]. We will first describe the theoretical optimum crystals and then describe to what 
extent practical samples should be inspired by those. 

A favourite candidate to achieve large gaps is a structure made of a triangular array 
of air holes in a dielectric matrix of high index n (typically n=3-4 in semiconductors) 
[10]. In these 2-D systems, the eigenmodes are either TE or TM polarized, and a 
complete gap can appear only if these two polarizations are inhibited. Calculations 
[11] show that this happens in the triangular structure for large air-filling factors fair 
(fraction of air per unit cell) above 60%, the largest gap being obtained for 
fair =78%. (Fig. 2). At these values, the air cylinders almost touch and are separated 
only by small veins of dielectric. 

Being less stringent, bandgaps for either polarization arise in the triangular 
structure, at values of a/~,  ( a  being the period of the lattice) in the range 0.2-0.6 
which means that crystal periods a should be around 200-600 nm to control 
propagation of light at ~, =i  ktm. 
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Experimentally, samples are realized using PMMA masks, defined by e-beam 
lithography and subsequently transferred on a GaAs substrate by two Reactive Ion 
Etching steps [6]. With this technique, or similar etching methods, period and diameter 
in the hundreds of nanometer range are quite feasible, as far as 2-D periodicity (only) is 
concerned. But, to be in perfect agreement with 2-D model, these structures should be 
made "infinitely" long in the third dimension and propagating waves should have a flat 
profile along this infinite direction. 

This is of course very difficult to achieve in practice: the mentioned technology 
hardly produces patterns with a [depth vs width] aspect ratio of 10. In particular, the 
optimal configuration of large air fraction requires dielectric veins less than 100 nm 
thickness which are very difficult to realize with reasonable depths, in the present 
state-of-the-art. Light also needs to be confined in or around the plane of periodicity, 
e.g. by means of a standard GaAIAs/GaAs waveguide, so that the light field rather has 
a guided mode profile in the third direction. This profile is not taken into account in 

( o a  

2=c 

0.4 

0.2 

1 I 1 t I l ] L 

0.2 0.4 0.6 0.8 
Air-filling factor 

Fig. 2 Bandgap map for a lattice of triangular air holes (e=l) in a matrix of dielectric 
constant e=13.6. The striped areas indicate the position and width of  the omnidirectional 
bandgaps, for each polarization TE and TM, as a function of the fraction of air fair They 
overlap only in the high fair region. 
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most calculations and one should ensure that waveguide and PCs are compatible, i.e. 
that light mainly remains guided upon interaction with the PC. In particular, it should 
be noticed that the presence of the air holes is an interruption of the horizontal 
waveguide. If these holes are too large, the guiding property may be lost and light 
might be strongly scattered into air and substrate when traversing a hole [12,13]. 

This scattering would be deeply detrimental to practical applications and should 
thus be avoided. A way to obtain this is to limit the amount of air in the structure to a 
moderate value, typically 0.2 to 0.3 in our experiments [14]. This value also decreases 
the stringent aspect ratio of the horizontal structure, making veins larger, so that 
depths of 1 btm can be reached by technology, bringing our samples even closer to a 2- 
D model [6]. The price to pay is to obtain a bandgap only for TE polarization (see 
Fig. 2). This is acceptable as many emitters are TE polarized, in particular the strained 
QWs we use [15]. Our goal was then to demonstrate that strong photonic effects still 
exist for guided light and despite the moderate hole depth ( = 3~,/n in our case). 

3 Description of Experiments 

To probe PC effects on light propagating in a waveguide configuration, the photonic 
structures are etched through a 250 nm wide GaAs monomode waveguide with large 
AIGaAs barriers. We use photoluminescence (PL) as a built-in light source. PL is 
obtained from the focused spot of a red laser diode (678 nm) which excites 3 InGaAs 
strained QWs embedded in the waveguide. Because of the presence of the guiding 
heterostructure, part of the PL propagates parallel to the surface as a guided mode and 
interacts with the photonic structure under study. Guided light then exits the sample 
through a cleaved facet of the sample where it is collected with a microscope equipped 
with polarizers (Fig. 3) [14]. 

Two perpendicular CCD cameras provide images of the surface and cleaved edge of 
the sample, in order to detect emitted light. The image formed on either of the CCD 
sensors is partly projected onto a multimode fiber of diameter 0 by means of a beam 
splitter. The optical fiber then feeds an Optical Multichannel Analyzer, thus 
performing a localized spectral analysis of a known disk in the image of the CCD 
sensor, with resolution t~/y ,  where y is the magnification of the optical line [16]. 

The emitted PL reaches the microscope through three different channels, 
propagating through air, through the substrate, or propagating in the waveguide. These 
three channels appear clearly separated in the microscope camera, e.g. when imaging 
the cleaved facet of the sample (Fig 4), so that the optical fiber allows to spatially 
select the guided mode of interest only, getting rid of the two unwanted channels where 
light is not affected by the structure. 
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Fig. 3 Schematics of the experiment 

Cleaved 
facet 
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Fig. 4 Image of the cleaved facet in the microscope. Guided light (3) appears as a thick 
vertical line and can be spatially separated from other contributions (through air (1) and 
through substrate (2)) by means of  an optical fiber. The black circle represents the 
equivalent diameter of the fiber. Warning: this picture has been contrast-enhanced to make 
all 3 signals clearly apparent. The guided signal is usually much brighter than the others. 
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The available light intensity of this built-in probe 11(~,) when exciting the as- 
grown heterostructure may be written as: 

I, (X  ) = I o (X  ) × ~/d × exp[-O~(Z)d]Tc,  aAs/ai r , 

where the first factor I 0 (~)  is the initial PL intensity emitted into the guided mode. 
The second factor is the part of the guided signal collected by the fiber, with d the 
distance from excitation spot to cleaved edge. The exponential term represents the 
intrinsic absorption of the guided mode on distance d ,  and the last factor is the 
intensity transmission coefficient at the interface with air. 

When exciting PL at such a position that the collected guided mode runs through 
a PC structure, the material section of thickness d '  between the parallel cleaved edge 
and the PC pattern has a special role: it forms a slab bounded with partially reflecting 
boundaries - -  the cleaved facet and the pattern (Fig. 5) [16]. 

Therefore, guided waves undergo in-plane multiple-beam interferences and the 
collected intensity becomes I2(~,) = Tn,(X ) × II(X), where Tn,(~)  is the well- 
known Fabry-Perot transmission [ 17]: 

(a) 

Microscope 
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(b) 
. d z 0.220 = 0,222 
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Wavelengt (nm) 
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Waveguiding 
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Fig. 5 (a) Multiple-beam interferences between the cleaved edge and the PC boundary. The 
measured intensity is le()t). A reference spectrum 11(,~) is also measured in an on-etched area. 
(b) Spectral oscillations appear in the ratio. The mean value (thick line) gives the 
transmission, while the fringe amplitude (between the two light lines) is proportional to 
the square root of  the reflectivity of  the PC. 



412 

TFp(X) = 1 - rr 2 t ] 2 
exp(2/-O) e x p [ - ~ / '  

t is the amplitude transmission and r the amplitude reflection coefficient of the 
photonic crystal and r 2 the amplitude reflection coefficient of the cleaved edge; 
2~ = 4rug neff/~, is the round-trip phase and exp(-ctar ) the absorption both at 
normal incidence. Except if ~ >>1, spectral oscillations (Fig. 5 (b)) appear in the 
ratio TFp(/], ) . They allow to extract T(~,) ---Itl 2 from the mean value and on the 
range w w._h~here I 1 (~)  is non-zero R(/'[,) = Irl from the fringe amplitude (proportional 
to ~/R(~,) ). 

Due to reabsorption of the guided mode by quantum well excitons, the probed 
wavelength range is usually quite narrow (about 20 nm wide only) in the case of QWs, 
so that only a small part of the band structure can be checked with one sample. Since 
the spectral response of the photonic structure scales with the size of the lattice, we 
fabricated photonic lattices with 7 different periods at a constant air-filling factor, 
ranging from a=180 nm to a=360 nm, in order to probe a large range of u = a/~ 
from 0.18 to 0.4. It should also be noted that due to refraction at the semiconductor/air 
interface (ratio of refraction indices about 3.5) combined to the limited numerical 
aperture of the objective (NA=0.4), guided light collected in the microscope has a 
maximum internal angle of 6.5 °, so that the photonic structure is probed in a quasi- 
directional way, at almost normal incidence. The different crystal axis, were probed by 
fabricating two types of pattern, with either the FM or the FK  principal 
crystallographic axis of the Brillouin zone, aligned along the probing beam (i.e. 
normal to the cleaved edge). Finally, a polarizer in the microscope selects the TE or 
the TM beams. 

4 E x p e r i m e n t a l  R e s u l t s  

4.1 Quantum Well Samples 

All subsequent data are taken through 15 unit cells thick quasi-infinite (30 pm-long) 
slabs of photonic crystal. Measured transmission T(u) (points) and their derivatives 
~)T(u)/Ou (arrows) are reported for all 7 samples and the 2 directions of propagation 
FM and FK [16]. Lines are guides to the eye. They are shown only for the TE case 
where a gap is expected (Fig. 6). For comparison, we show the theoretically predicted 
transmission (using Transfer Matrix Method) of a triangular array of infinitely deep air 
cylinders in a uniform dielectric, next to the experimental data. Parameters used in the 
calculation were f=28.5%, consistent with experimental values and dielectric constant 
6 = 10.2, somewhat lower than the effective index of the waveguide. 



413 

r- 10 1 
.g 

~ 10 -2 
t - -  

= 10  3 

I - - o  

t - -  
.o ~ 10 1 

16 3 

experiment 
I I 1 I 

,~. * ~ ' - ~  \ 

,'! 
,,, I t  

I L I [ 

• • . - - ~ , . ~ . t  . ~ , .  • . , . . . .  , . . . .  

/ 
• . i  i . .  i " 

s s  S 

. i  A ~ k  

• A -  - - ~  FM / 

• FK 
. . . .  i , , , , t , , , , i . . . .  i . . . .  

0,2 0,3 

2-D theory 

FM ~ i FK " 
~ I f  ;q 
',~ ,, 

' ! ' 
I I I 

0,4 0,2 0,3 0,4 

u = a / k  u = d k  

Fig. 6 Measured (left) and calculated (right) transmission (top) and reflectivity (bottom) 
for a slab of  PC with 15 rows thickness 

The general behavior of intensities as well as derivatives is very consistent with 
the calculation. In particular, one can note the relative positions of FM and FK curves 
and the two overlapping stop-bands around u =0.25, going down to the noise level. 
Clear falling band-edges appear at u =0.2 for FM and u =0.23 for FK. In the pass- 
window between tt =0.3 and u=0.35, transmission in excess of 50% is observed not 
far from the theoretical value. The contrast between pass- and stop-windows exceeds 
three orders of magnitude. 

A crucial test that would ensure that waveguided light has only in-plane 
interaction with the photonic crystal is that low transmission spectral regions coincide 
with high reflection ones. Reflection data obtained from fringe visibility are shown in 
the bottom frames. Unlike transmission data, points only are displayed, not 
derivatives, because there are not enough fringes in the 20 nm spectral window. Again, 
a very satisfying agreement is found. The highest reflectivity of R>80% is obtained 
for TE polarization propagating along FM, coinciding with the low transmission 
window. 

Reflection and transmission alone, however, do not tell the whole PBG story: one 
can see that both in theory and experiments, the low transmission window along FK 
does not coincide with a high specular reflectivity. If only transmission and reflection 
were allowed for guided light, one could conclude that guided light is lost out of the 
waveguide. But in fact, due to the periodic nature of PBG patterns, the in-plane 
interaction may also be largely diffractive. As discussed by Sakoda [18], plane waves 
may be diffracted at angles predicted by the standard ruled grating formulae. In our case, 
guided waves may be redirected in the Bragg direction given by the surface period of 
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the 30 ~tm-long PBG slab: a for FM and a/3a for FK, still propagating as guided 
waves. Cgnditions for diffraction at normal incidence are then u > (nef f ) -  for FM and 

> - l  - 1  u_a/3 nef f for FK. Only below these cut-offs should one observe R + T = I .  
Above, four beams are diffracted in first-Bragg orders at angle 0, two with efficiencies 
0R and two with efficiencies J'/T (Fig. 7 (a)). This is not a loss mechanism and does 

not preclude the use of PBG for spontaneous emission control: lossless interaction 
with the structure now reads R + T + D =  1 where D = 2 0 R  + 2T/T is the 
diffracted power for unit incident power. 

Experimentally, the in-plane diffraction is detected in the geometry shown in Fig. 
7(b & c). In transmission (Fig. 7b), guided light also appears at a point B, away from 
the direct beam in A. Recalling the -6 ° directional selectivity achieved by our setup, 
light occuring at such a point can only have been redirected by the lattice from oblique 
incidence 0 to normal incidence and is therefore an unambiguous signature of in-plane 
diffraction [19]. The same holds for the reflection geometry of Fig. 7c. The direct 
beam is seen at A', but light also emerges at B'. In both cases, one measures at B or B' 
the diffraction efficiency at oblique incidence 0 if the reference is taken at a distance 
d"  from the edge, equal to the total diffracted light path ( d" =SC+CB in Fig. 7). The 
result is, from calculation (and it can be shown by time reversal symmetry arguments) 
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Fig. 7 (a) Incoming guided light can be directed in any of the Bragg directions, i.e. it can 
either be transmitted, reflected or diffracted forward and backward. (b) Visualization of 
forward diffraction in our setup. (c) same for backward diffraction. 
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Fig.8 Measurements and calculations of backward diffraction from our samples 

that a reciprocity rule holds for oblique to normal incidence and normal to oblique 
incidence diffraction efficiencies, so that the measured efficiencies in our experiment 
are the same r/R and T/T of Fig. 4a. 

The set of measurements on all samples is shown in Fig. 8 for TE polarization in 
the backward diffraction geometry and compared to calculated curves for 2 OR, using 
the same fitting parameters as above [19]. One can clearly see that along I-'M, no 
diffraction occurs below the cut-off value. Along FK, diffraction is likely everywhere 
in the displayed u range, in particular, in the bandgap between u =0.22 and u =0.28. 
The maximum value reaches unity in theory and is measured at 90% for u=0.21. 
Diffraction efficiencies in the forward geometry were also measured, but they are not 
displayed here, as efficiencies (predicted and measured) are all below 30%. 

In summary, diffraction phenomena are an integral part of photonic bandgap 
concepts if the outside medium is just the unetched dielectric matrix, a quite canonical 
case indeed: the periodic nature of photonic crystals results in the fact that light whose 
propagation is forbidden is not necessarily specularly reflected by the crystal. Backward 
diffraction is the other possible channel, which can be predominant in the bandgap 
region. As a consequence, photonic crystals cannot always be considered as perfect 
specular mirrors in the bandgap. 

Experimentally, losses outside the waveguide achieved by the photonic structures 
can be estimated through the value of E = R + T + D : light not directed in one of the 
three channels - -  transmission, specular reflection or diffraction,-- is most certainly 
lost out of the waveguide. The high values achieved for R and D in the bandgap in 
agreement with theory, drive ~ to values near unity. Out-of-plane losses L estimated 
through L = 1 - Z  are thus weak so that applications of photonic crystals as 
integrated optics elements can already be envisioned with present samples. Finally, the 
consistency of the three coefficients R, T, D with the perfect 2-D theory (no 
waveguide, infinite holes) shows that, in the moderate fair limit, the main trends of 
the 2D picture holds in the deep-etched guide configuration despite the lack of 
waveguiding in the holes and their finite height. 
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4.2 QDs Samples 

Previous measurements show that the main trends of the perfect 2-D picture holds in 
our samples, e.g. the presence of a TE bandgap as well as the occurence of diffraction. 
In particular, it is of practical interest for future devices to note that the bandgap width 
obtained with fair=30% is large enough to obtain an inhibition of the propagation of 
the whole TE spectrum emitted by the sample. This is the case e.g. in our 4th sample 
with a=260 nm. However, the use of QWs emitters limits the collected data to 
discrete points along the u = a/~, scale whereas a continuum spectrum would provide 
much more detailed information essential to the design of future devices. 

Let us remind that the available probe light intensity is: 

11 (A ) = 10(A) ×O/d × e x p [ - a ( A  )d]TGaAs/air 

The probe spectral width is thus limited both by 10 (~,) and the reabsorption spectrum 
~(~,) .  In particular, in quantum well samples, the spectral width of I0(~, ) can reach 
100 nm under strong optical excitation, whereas the exciton strong reabsorption 
reduces the "useful" of I1(,~) width to 20 nm only (Fig. 9), in the low energy tail of 
I0(X). 

InAs self-organized quantum dots (QDs) overcome these two limitations [20,  
21]: a deliberately large inhomogeneous dot size distribution translates into a 
broadened I 0 (~,) [22], as well as into a weak reabsorption compared to QWs (in other 
words, the oscillator strength is distributed over a broader spectrum), so that 11(~) 
and 10(~, ) have comparable widths over 100 nm (Fig. 9). Measurements from 
samples with 10% varying PC periods thus have spectra which overlap in the a/~, 
scale. Spectra obtained from our 7 samples then give a complete image of the 
transmission at the bandgap and far into its boundaries [23]. As an example, we 
present in Fig. 10 a set of data obtained for TE polarization, along FK orientation, 
when the number of rows of the structure varies from 3 to 15. Instead of having 
discrete data points as in Fig. 6, spectra now completely overlap for a given number of 
rows, within small stitching errors, confirming the good reproducibility of the air- 
filling factor in our fabrication technology. The bandgap clearly builds up when the 
number of rows in the sample increases confirming by the way that the PBG effects 
overcome largely the losses. One can see in particular that the steepness of the band 
edge is already maximum for N=12, which appears as an optimum number of rows, in 
term of passwindow / stopband contrast. 

The data for samples with a large number of rows also show oscillations of the 
transmission in the "pass-window". These oscillations are DBR-like oscillations due 
to interferences of Bloch modes reflected at the PC boundaries in the structure. They 
also prove the good quality of the samples and allow to determine the band structure of 
the sample [23]. A more detailed comparison with theory can now be performed. QWs 
samples showed that the 2D model holds in its globality, QDs samples can now show 
the detailed intrinsic effects of real samples which includes possible limitations of the 
2-D model. 
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Fig. 10 Transmission curves as in Fig. 5, using 1hAs QDs layers as emitters in the 
waveguide, so that spectra from successive samples overlap, giving rise to a continuous 
spectrum. Transmission measurements show the building up of the TE bandgap along FK 
when the number of PC rows increases from 3 to 15 rows. The final omnidirectional 
bandgap is visualized for 15 rows by adding the transmission curve along FM. 
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5 Photonic-Crystal-Bounded Microcavities 

5.1 1-D Cavity 

Once the basic properties have been established, PCs can be used as constitutive 
elements of more elaborate photonic structures. We remind that these 2-D PCs are 
expected to perform a lateral control of light propagating in a planar waveguide, and 
ultimately to surround small cavities, where control of spontaneous emission could be 
achieved. A first step towards these goals is the demonstration of horizontal cavity 
effects, using photonic crystal mirrors. They offer a good insight on reflector 
performance, through the finesse and peak transmission of cavity modes [24]. 

A horizontal 1-D cavity can be simply designed by etching 2 slabs of PC, a 
few hundreds of nanometers apart, through the waveguide. A simple transmission 
measurement through the cavity, as described before, allows to determine the cavity 
resonances [25]. Fig . l l  shows the obtained spectra for cavities with a large 3 lam 
spacing between the PC mirrors. The number of rows of each mirror increases from 3 
to 9. Measurements using QWs as emitters, clearly show a transmission peak, whose 
finesse increases with the number of rows, clearly demonstrating the cavity effect. The 
small superimposed oscillations are due to parasitic interferences between the cleaved 
edge and the pattern (similar to those used to measure reflectivity of single slabs). 
Fabry-Perot fits were performed and give a maximum reflectivity of 80% and losses 
estimated to 11% for the sample with 9 rows. 

However a 3 lam spacing results in a relatively high-order cavity (m>20) .  To 
affect spontaneous emission directionality, small cavity orders are desired (see 
Benisty's notes) and small cavity volumes are required for lifetime changes (see 
G6rard's notes). Fig. 12 shows the transmission measurement on a cavity as small as 
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Fig. 11 (a) 9ntal cavity. Cavity resonances are 
detected through peaks observed in the transmission spectrum. (b) The peak finesse 
increases with the number of  rows, indicating the reflectivity of  the boundaries also 
increases 
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70 nm width [26]. It was carefully designed according to passive reflectivity 
measurements: QDs were chosen as the active material for a broader spectrum. The 
periodicity was chosen as 220 nm with 4 i r  still around 30% and the orientation of 
the photonic crystal was chosen along FM, so that no in-plane diffraction is allowed 
and the expected reflectivity is high as the QDs emission is inside in the expected 
bandgap. The cavities have only 4-row PC mirrors on each side. As a comparison, the 
transmission of a 8-row mirror (no cavity) was found to be around 1%, while the 
cavity transmission exhibit a clear peak with maximum transmission around 40% 
(Fig. 12). Half width is 8 rim, which gives a quality factor of 125. This quality factor 
translates into a finesse of 63 (the cavity order is close to 2) and a mirror reflectivity of 
95%, so that the estimated losses are as weak as 4% per mirror, including absorption 
losses within the cavity, due to the presence of the QDs. As a result, losses through 
out-of-plane scattering are as weak as a few per cent in our samples. Even smaller 
values could be expected for future devices by providing greater optical confinement in 
the out-of-plane direction, by means of a vertical microcavity or by using oxidized 
AlAs in the confining layers, both solutions being compatible with optoelectronics 
technology. 
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Fig. 12 Peak transmission through a 70 nm-wide horizontal cavity. The Q is 125 for  a 
cavity order equal to 2, e.g. the mirror reflectivity is over 95%. Note the small period FP 
fringes due to the cavity reflectivity , that are superimposed to the cavity resonance,. 
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5.2 2-D Cavity 

The extension to cavities surrounded by 2-D photonic crystals is at hand, but their 
interpretation promises to be awkward, as soon as the size is small enough for the 
structured boundary to play a predominant role in detailed mode shape and frequencies 
[27]. We therefore investigated first simpler circular microdisk cavities surrounded by 
mirrors inspired by the photonic crystal approach, but which can be considered neither 
1-D nor 2-D [28]. 

Modes in microdisks of radius R are at wavelengths ~'n,m characterized by a radial 
number n (number of nodes along a radius) and an azimuthal number m (number of 
nodes along a circle) [29]. The well-known Whispering-Gallery Modes (WGMs) have 
m > > n ,  which means in k-space representation that they have almost grazing 
incidence on the circle boundary: they are well confined by total internal reflection at a 
semiconductor/air interface (Fig. 13a). High-Q modes as well as lasers with very low 
thresholds have been demonstrated in fiat GaAs disks surrounded by air [30]. On the 
opposite end, Quasi-Radial Modes (QRMs) have n > > m ,  which means in a ray- 
tracing model that they have almost normal incidence on the circular boundary: in 
simple disks, they are only weakly confined by the 30% reflectivity of the interface 
(Fig. 13b). Some kind of PC mirrors are thus required to confine those modes, the 
simplest of which is a circular Bragg mirror, made of concentric air trenches [31]. 

We etched such mirrors through our heterostructure, using QDs as emitters 
(Fig. 14a) [32]. Gaining on our experience of moderate amount of air in 2-D PC, we 
designed a 4th-order Bragg mirror, with narrow air-trenches (about 70 nm wide). The 
center 3 ktm diameter waveguide disk forms the cavity. The PL of QDs is excited 
inside the resonator, in order for the guided spontaneous emission to probe the disk 

Mode 
structure 

(a) quasi-radial mode (b)whisper ing gal lery mode 
m n < < m  

Ia 

~ ( ~  nodal ~ 

trajectory ' (P 

Fig.13 (a) Whispering-Gallery Mode and (b) Quasi-Radial Mode in a circular microcavity. 



421 

(a) (b) 

PL excitation 

Ba 
gt d by 
C~ ra ber 

Fig. 14 (a) Micrograph of  the cavity (the central unetched area is 3 ~m diameter) 
surrounded by the circular Bragg mirror made of concentric deeply etched trenches. (b) The 
PL of QDs is excited inside the cavity. The resonances build up and are observed through 
light leakage in the 4th order grating 

resonance. Not only do QDs have a broad spectrum, but they also efficiently reduce 
carrier diffusion by trapping electron-hole pairs, so that the intensity of PL is still 
large, despite the close presence of recombination centers at the etched boundaries. The 
disk resonances build up in the cavity and are primarily outcoupled to the guided mode, 
where they slightly leak to the air through second order Bragg diffraction (4rt phase- 
difference towards the air and the substrate), similarly to surface emission mechanism 
of second-order DBRs (2rt phase difference towards the air). Light collected from the 
Bragg grating thus allows to observe the horizontal resonances (Fig. 14b). 

Spectra are shown in Fig. 15 for structures with gratings of variable periods. The 
main observation is that many sharp peaks of width A)~=1.5-5 nm show up in the 
spectra in clusters of one to four, while light collected from s~mple mesas (shown in 
inset) exhibit only very broad features. The shift in period results in a shift in the 
expected stop-band. The stop-bands calculated in the simplified case of 1-D grating are 
indicated as thick black lines in the graphs: the sharpest multiple clusters are located 
into the stop-bands, while there are almost no marked feature outside them, confirming 
that the peaks are indeed the signature of confinement due to the grating. 

Using a 2-D model with metallic boundary on an effective radius of 3.7 lam, we 
could further identify the peaks as QRMs, as expected. The best Q's we could measure 
are up to 650, which results in a reflectivity close to 90% at normal incidence. These 
novel mirrors inspired by the photonic bandgap approach prove a very efficient 
confinement of modes, still in the small air fraction limit. Useful implementation 
such as for the change of spontaneous emission time, can thus be envisioned for 
smaller cavities. 
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Fig. 15 Light is collected from cavities with various pitches A and central diameter equal 
to 5 times the pitch. Clusters of  peaks appear in light collected from the grating area, 
mainly at wavelengths within the grating stopbands, calculated in a 1-D model and 
indicated by thick black lines. Inset: Collected spectrum from a simple mesa shows only 
smooth features. 

6. Conclusion 

This set of quantitative measurements amply demonstrates that the 2-D PCs which can 
presently be fabricated can already control guided light propagation through reflection, 
transmission and diffraction, although it was feared that this would be prevented by 
scattering into the substrate. Those promising results are further confirmed by the high 
quality of 1-D and 2-D microcavities bounded by PC structures. The next steps are 
clearly to demonstrate microcavity effects such as lifetime changes (Purcell effect), 
enhancement of LED efficiency and applications in integrated optics. Let us elaborate 
on the latter. While some application of PC's have been predicted, and sometimes 
demonstrated in the microwave regime [33,34], the present experiments show that a 
number of building blocks necessary for integrated optics can be achieved with 2D 
PC's, some being even quite original compared to the usual integrated optics toolbox 
[35]. 
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Limitations to optical communications 
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L E C T U R E  I - Links without amplifiers 

1 Background 

The origins of optical fibre communications as seen today trace back to two 
key developments. The first was that of the laser in 1960 which made 
available for the first time a coherent optical source at a carrier frequency in 
the range of 10 TM to 1015 Hz. This soon sparked discussion of the 
communication properties of light, noting, for example, that a mere 1% 
bandwidth would offer in the range 1 to 10 THz of spectrum space, an 
almost unimaginable amount compared to the norms for electrical 
communication of the time. (One notes that the entire radio, microwave and 
millimetre wave range embraces 300 GHz). 

Early work on optical communications was largely aimed at exploiting 
this huge potential, usually using free space or gas as the transmission 
medium, until the paper published by Kao & Hockham in 1966 proposed the 
u s e  of a glass fibre dielectric waveguide and linked it with much more 
modes t  albeit  realist ic potent ia l  appl icat ion.  Coming  f rom a 
telecommunications laboratory, they had in mind the transport of data at 
rates of perhaps 140 Mbit/s, the highest rate then commonly used in 
telecommunications, coupled with a desire to achieve 2 km repeater (source 
to detector) separation which implied achieving an attenuation of less than 
about 20 dB/km. This was a technologically challenging target, since fibre- 
optic guides of the time had attenuations that were more typically 1000 
dB/km. As a result, an intensive study was launched of the loss mechanisms 
in glasses and means to overcome. Today, glasses based predominantly upon 
the oxide of silicon (SIO2) and known as silica dominate almost all thinking 
on the subject, just as chips based upon silicon dominate most electronic 
design. 

In passing it is worth noting the data rates commonly  found in 
telecommunications networks today. The single telephone channel is 
digitised to produce a 64 kbit/s data stream. 30 of these are electronically 
multiplexed together to form a basic "building block" level of 2.048 Mbit/s. 
Increasingly, data is also carried in the form of ATM cells, short packets of 
data each consisting of 53 bytes (424 bits) containing 48 bytes of message 
data and 5 bytes of header giving source and destination data. Fibre 
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transmission systems are typically found carrying data at the rates listed 
below: 

Data Rate (MBit/sec) No. ATM cells per No of telephony 
second (approx) channels (approx) 

155 365 thousand 2000 
1200 2.8 million 15000 

10,000 23 million 130000 

Table 1. Typical data rates found in fibre telecommunications transmission 
systems (per fibre) 

2 Types of Fibre 

Two types of fibre are in widespread use today, namely the single-mode and 
graded-index designs. Both are of circular cross section and feature a 
guiding core of higher index glass surrounded by a cladding of lower 
refractive index. Their general characteristics are summarised below. 

Type Outside Core Peak Core " Cladding 
diameter Diameter Index Index 

(mm) (mm) (approx) 
Graded Index 0.125 0.05 1.46 1.45 
Single Mode 0.125 0.008 1.454 1.45 

Table 2. Typical Fibre Characteristics 

For simple thinking purposes, guidance can be considered to occur by Total 
Internal Reflection at the core cladding interface but a proper analysis 
involves the solving of Maxwell's equation to solve for the guided modes of 
the waveguide structure. 

The single mode fibre is characterised by having a V value of : 

V = 2rta~n~_n~rw ,, < 2.404 

where a is the core radius, nl the core index, n2 the cladding index and )~ the 
wavelength of the light guided. It should be noted that such fibres actually 
guide two modes having degenerate spatial mode patterns but with 
orthogonal polarisations. The mode pattern looks very much alike a 
Gaussian spot in cross section. 

The graded-index fibre has a refractive-index in its core which varies 
parabolically with radius. Because its core is much larger than that of the 
single mode fibre, it guides many modes and in general, these travel at 
different speeds through the structure. As a result, pulse spread by multipath 
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or multimode dispersion. A popular theoretical model for studying this is the 
"alpha" profile model which models the index variation as : 

[ /r/°] 
n(r) = n o 1 -2A 0 < r _< a 

n(r) = no[1-2A ] r > a 

For reasons we will discuss below, profiles having alpha approximately 
equal to 2 are strongly favoured. 

The overwhelming attraction of the graded-index fibre design over the 
single mode designs is its larger core, making jointing and launching much 
easier and hence cheaper. As a result, it is to this day used for cost sensitive 
intermediate performance applications, such as FDDI links on campuses. 

2.1 Multipath or Multimode Dispersion 

The single mode fibre, being characterised by only one spatial mode, allows 
light to travel by only one pathway through its length and accordingly, pulse 
spreading arising from the multiple paths that exist in multimode fibres 
cannot occur. The Graded Index fibre, because both its core and index 
difference are much larger, has V >> 2.404 and accordingly supports many 
modes. (Very approximately, the number of modes M in a graded index fibre 
will be given by M= V2/4). Since different modes travel at different speeds, 
pulse spreading occurs since light inevitably travels in all modes on a long 
fibre because of mode coupling. 

Using the alpha profile model above, the wave equation has been solved 
analytically [3] to derive expressions for the pulse spreading arising in such 
a structure and typical results are given below in Fig. 1 in units of ns/km. 
This shows that close to an alpha value of 2, there is a sharp minimum in 
pulse spreading implying that an index profile close to a parabolically 
varying one is optimum. Production graded index fibre uses such a profile 
and typically achieves multimode dispersion values of about 1 ns/km, to 
within a factor of 3 either way. The problems of production control make it 
very difficult to hold the profile in the minimum and thus the spread arises 
from variations in the profile produced away from the optimum. 

Fibre Type 
Graded Index 
Single Mode 

Multipath dispersion 
0.5 to 5 ns/km 

0 ns/km 

Table 3. Typical fibre multipath dispersion values 
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1.0 
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0.01 

LND/2c  = 25 ns /km 

D = 0.01 y = 0  

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 
alpha value 

Fig. 1. Variation of multipath dispersion with alpha profile parameter 

2.2 Material Dispersion 

A completely separate dispersion in fibres arises from the dispersive 
properties of the fibre material and the fact in a dispersive glass, different 
wavelengths of light travel at different speeds. Given that the refractive 
index is n and phase velocity Vp = c/n, we know that pulses travel at the 
group velocity where Vg = c / N a n d  N = n - L dn/d~,. The transit time 
through a length L of fibre for a pulse is therefore : 

LN 
~ t r a n s i t  = 

c 

and the spread in transit times arising from a spread in wavelength of 5;L 
must be given by • 

L dN L d2n 
6Ztransit = Vspread - c d)t, 6)~ - c --d~ 2 6,~, 

An examination of the form of the refractive index versus wavelength curve 
for silica shows that there is a point of inflection at about 1300 nm 
wavelength implying that this effect must go to zero at that wavelength. 
Evaluation of the effect yields the curve below where the material dispersion 
is plotted in Fig. 2. in practical units of picoseconds of pulse spreading per 
kilometre travelled per nanometre source line width (e.g. ps/(nm.km)) 
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Fig. 2. Variation of material dispersion with wavelength in silica fibre. 

This curve makes abundantly clear that there is large benefit to working at 
1300 nm wavelength as opposed to the 850-900 nm range characteristics of 
GaAs based sources that was exploited for the first production systems. 

2.3 Fibre Attenuation 

The attenuation properties of silica have been studied extensively with the 
result that the fundamental loss mechanisms associated with the material are 
now fairly well tabulated. There are three primary ones. The Ultra Violet 
region is dominated by the electronic band edge absorption of the SiO2 but 
this falls away very rapidly as one moves into the visible and is considered 
negligible in the range of interest for the fibre systems use. Throughout the 
visible region, there is also Rayleigh Scattering which arises from the 
random density fluctuations of the silica glass as well as composition 
fluctuations when the glass is doped, as in the core, to change its refractive 
index. Typically this takes a value of 1 dB/km at a wavelength of 1 micron 
(1000 nms) and extrapolates as X-4. Finally, there is a very intense dipole 
absorption arising from the vibration of the Si-O bond which has its 
fundamental frequency at about 3.3 1013 Hz or 9 microns (9000 nm). At this 
wavelength, silica (and all oxide glasses) are "jet black". The wings of this 
absorption give rise to a rapidly increasing absorption seen in fibres starting 
at about 1600 nm and rising towards longer wavelengths. These effects are 
shown below together with the resultant curve, with the attenuation plotted 
in units of dB/km, showing a clear and fundamental minimum in the region 
of 1550 nm. 
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Fig. 3. Typical constituent effects in silica fibre attenuation versus wavelength. 

These effects set  rather solid limits to the attenuation values that can be 
achieved in a silica based fibre as follows • 

Wavelength Minimum Typical Range 
(nm) (dU/km) (dB/km) 

850-900 1.9 3-  10 
1300 0.35 0.35 - 0.6 
1550 0.17 0.17 - 0.25 

Table 4. Typical fibre attenuation values 

To achieve lower losses than these, one must move to a different materials 
systems. Crystal quartz has vastly lower Rayleigh scattering but is hardly a 
serious candidate for fibre manufacture, many non-oxide glasses offer 
superior IR transmission and hence the potential of lower attenuation at 
longer wavelengths but are also extremely intractable materials to work 
with. As a result and because of other reasons that will emerge later, silica is 
firmly anchored as the fibre medium of choice and is not expected to be 
challenged in the foreseeable future. 

Taking the three wavebands of interests, we can summarise our 
conclusions so far as : 

- 850 to 900 nm. 
Allows use of low cost devices (GaAs sources, Si detectors) but 
characterised by high material dispersion ( circa 100 ps/(nm.km), and high 
attenuation (3-10 dB/km). Ideal for cheap modest performance links using 
graded-index fibres. 
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- 1300 nm 
Attractive combination of zero material dispersion and lower attenuation 
(0.35 - 0.6 dB/km) coupled with availability of sources and detectors 
developed for this wavelength have established as the wavelength region of 
first choice for most land based telecommunications applications, using both 
single mode and graded-index fibres. 

- 1500 nm 
Offers the ultimately lowest attenuation but carries a penalty of higher 
material dispersion. However, in single mode fibres, this can be overcome 
and is now the preferred wavelength for very high performance systems. 

We note in passing that there are other effects that can easily increase the 
attenuation of fibres above the minimum values quoted. In the 1300-1500 
nm region, the most notable is the presence of O-H ions in the glass giving 
rise to a fundamental dipole absorption at 2.8 microns and a second 
harmonic absorption at 1.4 microns. The resulting transmission spectrum for 
a typical modern fibre is thus more like that shown below in Fig. 4. 
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Fig. 4. Overall attenuation seen in a typical single mode fibre. 

3 Simple Fibre System Models 

A simple approach to establishing what performance a given combination of 
components is capable of is to do two calculations, one concerning power 
budget and the other concerning dispersion budget. In reality, these are 
linked in a much more complex model that involves calculating the exact 
size and shape of the eye-diagram at the receiver as well as the noise level 
and hence the error rate but a good indication of performance is obtained 
using the simple approach. The power budget model is illustrated 
schematically below in Fig. 5. 
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Fig. 5. Power budget model for a simple fibre system. 

It involves establishing the mean power launched into the fibre, the mean 
power required by the receiver to achieve an acceptable error rate at the 
desired bit rate and hence establishing what power ratio can be dropped 
across the fibre. Hence, knowing the fibre attenuation, an upper length is 
established for the transmitter to receiver distance. 

Then a calculation must be done to explore the pulse spreading properties 
to ensure that the pulse is not completely scrambled over the length. This is 
illustrated schematically in Fig. 6. 
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Fig.6. Dispersion budget calculation. 

To make life simple, it is common to assume that the transmit pulse width is 
half the bit interval, to calculate the pulse spreading due to material 
dispersion and to multipath dispersion if a multimode fibre is used, then 
convolve these together using square-root-sum-squares and then to test 
whether the resultant and greater or less than the bit interval. Applying the 
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equality to this condition sets an approximate upper distance limit from 
dispersion considerations. 

The result of such calculations generates two curves, one power budget 
derived and one dispersion budget derived, that take the form shown below 
in Fig. 7. 
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Fig. 7. Typical results of the power and dispersion budget calculations for 0.85 
and 1.3 micron graded-index operation. 

One should note that the exact position of the limit curves evidently depends 
on the exact values chosen for the various devices modelled so that the 
above curves (for graded index fibres) indicate typical operating regions and 
typical limiting regions. By very careful selection of components, it might be 
possible to do better. 

The above curves show that moving to 1300 nm has markedly increased 
range because of the lower attenuation but bit rate is still seriously 
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Fig. 8. Typical power and dispersion budget calculations for 1.3 micron single 
mode fibre operation. 
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constrained because of the multi-path dispersion expected in the graded 
index fibre. Moving to single mode fibre avoids this problem with the result 
shown in Fig. 8. 

These curves indicate very clearly why 1300 nm single-mode systems 
have been the standard deployment for inland telecommunicat ions use 
throughout the world for the last decade, with systems operating at bit rates 
of 155, 650, 1200, 2400 and now 10,000 Mbit/s. 

4 Receiver Sensitivity 

The above system curves were derived using an assumed receiver sensitivity 
of order 2500 photons (mean) per bit as a crude approximation to what is 
routinely achieved using APD or PIN detectors with low noise amplifiers. 
This is far higher than is required. For example, if we had a noiseless 
receiver, then we could ask how many photons/bit would be required on 
grounds of (photon) Shot Noise. 

Assume that photons arrive with a Poisson distribution. When a ZERO is 
sent, no photons are sent and none will arrive since there is no spontaneous 
emission at these wavelengths. When a ONE is sent, assume that on average 
m photons arrive. How large must m be to achieve 10-9 error rate. Poisson 
statistics tells us that : 

m n 
P(n,m) = exp(-m) 

n! 

and hence the probability that n arrive when m were expected. Given our 
noiseless receiver, when 1 or more photons arrive, we will assume correctly 
a ONE was sent and when 0 photons arrive we will assume a ZERO was 
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Fig. 9. Typical receiver sensitivity values for various types of receiver. 
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sent but in so doing will make an occasional error since P(0,m) is finite. The 
question is now - what value should m be for P(0,m) = 10-9 to which the 
answer is m=21. Thus a mean arrival rate of 10.5 photons could suffice, 
some 24 dB better than that assumed in our simple model. 

Much of this gap has been closed by recent developments in optical 
amplifiers to be discussed later. As a result, the incoming optical signal can 
be amplified (with an EDFA - see next Chapter) so that, on detection, it is 
much larger compared to the receiver noise. Using this approach, a 
theoretical sensitivity of about 38 photons/bit has been predicted and of 
order 100 photons per bit achieved. Typical sensitivity curves are shown 
above in Fig. 9. 

5 Increased Range - Dispersion Shifted Fibre 

In our discussion of single mode fibre above, the range allowed between 
transmitter and receiver is still limited by the power budget although the 
dispersion budget allows very high bit rates to be transmitted. Form the 
attenuation curves, moving to 1550 nm operation is obviously beneficial but, 
as noted in the discussion on material dispersion, this takes one away from 
the favourable zero of material dispersion at about 1300 nm wavelength. 

However, waveguide analysis of the single mode fibre structure shows 
that there is another dispersion mechanism present that adds to the material 
dispersion and that arises from the physical structure of the guide itself. The 
signs are such that this "waveguide dispersion" terms adds to the material 
dispersion in such a way as to shift the zero of dispersion towards longer 
wavelength. Designing a guide specifically to achieve large waveguide 
dispersion therefore allows the designer to shift the effective zero of 
dispersion to 1550 nm. Such fibre is known as Dispersion Shifted (Single 
Mode) Fibre and is referred to as DSF. The typical dispersion curves for 
such a fibre are shown below in Fig. 10. 
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Fig. 10. Typical dispersion curves for standard and dispersion shifted single 
mode fibres. 
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The result is a fibre with near ideal transmission properties, low attenuation 
of circa 0.2 dB/km coupled with zero dispersion both at a wavelength of 
about 1550 nm. Not surprisingly, this has attracted great interest and usage 
in very long haul transmission systems such as those that run undersea• 
Typical operating windows are illustrated for this fibre below in Fig. 11 
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Fig.ll .  Results of dispersion and power budget calculations for DSF fibre versus 
standard single mode fibre. 

6 Fundamental limits to dispersion 

In what we have said so far, we have implied that dispersion is controlled by 
the source line width interacting with the material dispersion (or in the case 
of single mode, the overall dispersion) but we have said nothing about what 
the source line width might be. If we use an LED source, the source line 
width is typically 30-50 nm which corresponds to some 4000-6000 GHz and 
thus has nothing whatsoever to do with the modulation being applied• 
Simple cleaved-cavity semiconductor lasers can easily emit light over a 
range of 5-10 nm or 700-1400 GHz, similarly unconnected to the data 
modulation but purely reflecting the overmoded character of the laser cavity. 

However, modern Distributed Feedback (DFB) Lasers emit light in a 
single reasonably stable line with perhaps a natural line width of 100 MHz to 
1 GHz so that, once modulated by high speed data, the effective line width 
can easily be controlled by the data rather than the source• Under these 
conditions, one show that the maximum bit rate allowed is roughly given by 
(in practical units for easy evaluation): 

2 .9 ,10 t4 
Bma x (bit / sec) - 

A(nm) 
I 1 

L(km)Dma t (-ps / (nm• kin)) 

If we plot this result for various values of fibre dispersion and for 1550 nm 
operation, we obtain the following results shown in Fig. 12. 
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Fig. 12. Ultimate limits set by dispersion 

In the short term, this suggests that dispersion should be little problem 
provided that careful control of the source line width is exercised. However, 
as we shall see later, the development of fibre Amplifiers now means that the 
system length can be increased almost indefinitely so far as the power 
budget is concerned so that distances of 3000-10000 kms have become of 
real engineering interest (corresponding to Trans-Atlantic and Trans-Pacific 
types of system). Here it is apparent dispersion will be significant factor and 
extreme care will have to be exercised to retain data free of distortion. 

6.1 Polarisation Mode Dispersion (PMD) 

Another linear mechanism that can also lead to pulse broadening arises from 
the fact that the single mode fibre actually carries two modes of orthogonal 
polarisation state. When the fibre is perfectly circularly symmetric, the two 
modes are degenerate but any departure from that leads to splitting of the 
degeneracy and hence another pulse spreading effect, To give some feel for 
the scale of the problem, a PMD value of lps/~/km would arise from any 
one of the following : 

- 0.7% core ellipticity 
- 4 gm.wt./cm lateral stress 
- 3 cm radius bend 

It needs little imagination to see that the first two in particular could occur 
very easily. The results of such PMD limitations are estimated on the curves 
below in Fig. 13 to give a feel for the levels needed in advanced system 
design. Once again, we have an effect that can very easily become serious 
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for long haul trans-oceanic systems but is not likely to be serious for short 
haul inland systems. 
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Fig. 13. Implications of various PMD values for systems. 

LECTURE II - Amplifiers and Non-Linear effects 

7 The Erbium Doped Fibre Amplifier (EDFA) 

We saw in Lecture I that the range of a fibre link was limited by the 
minimum attenuation possible in a (silica) fibre coupled with the 
practical launch power and receiver sensitivity and that, whilst all of 
these could be tweaked and optimised, other than operating at the 
minimum attenuation wavelength, we ran into a wall of rapidly 
increasingly difficulty somewhere in the 100-200 km range region. The 
addition of the optical amplifier as a means to boost the optical power in 
the fibre has largely solved this problem. Early studies were based upon 
the use of semiconductor laser chips operated below threshold as 
amplifiers but the development of the EDFA has essentially removed 
them from contention except in very special cases. 

The EDFA is based upon a short length of single mode fibre whose 
core has been doped with the rare-earth Erbium ion. This can be 
optically pumped at about 980 nm or 1480 nm to produce gain in a 
window centred on about 1550 nm. The configuration of such an 
amplifier is shown schematically below in Fig. 14. 
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Fig. 14. Schematic layout of an EDFA. 

The whole assembly typically is contained within a box the size of a 
lap-top computer. The pump laser is a specially produced 
semiconductor laser optimised to emit at the appropriate wavelength 
but because the absorption lines are fairly broad, this does not have to 
be controlled with great precision nor does the emission line width. The 
optical lifetime of the inverted Erbium ion is measured in many 
milliseconds with the result that this does a superb job in averaging out 
the rapid intensity fluctuations common in most semiconductor lasers. 
Gain values of 10-30 dB are obtained so that placing one after every 
100km of 0.2dB/km fibre operating with a gain of 20dB provides a loss- 
free data-pipe section that can be repeated ad-infinitum. 

With such high gains possible, great care must be taken to avoid 
unwanted reflections and to stop the build-up of an unwanted backward 
propagating wave so a Faraday Isolator is frequently found within the 
overall package. The inputs (signal + pump) are combined using a 
dichroic fibre coupler which allows the pump wavelength to cross over 
and the signal to bypass so that the whole assembly involves single 
mode splices rather than the lossy and reflective joints found in 
interfacing fibres to semiconductor lasers. 

In practice, however, such links cannot be extended indefinitely since 
although the power levels can be restored, there is an inevitable slow 
build up of (optical spontaneous emission) noise that eventually will 
drown the signal. The noise power at the output of a single amplifier is : 

Pn  = 2 nsp h v  ( G -  1) Bopt. 

In this equation, the term nsp is the spontaneous noise factor and is 
typically l<nsp<4 for the EDFA but much larger for semiconductor 
amplifiers, G is the gain and Bopt is the full optical bandwidth in Hz. In 
the case of the EDFA, this is typically 50 nm or 7000 GHz so that 
unless something is done to restrict it by means of very narrow optical 
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line filters, a great deal of unnecessary noise can be accumulated in 
transit. However, by careful design, amplified fibre systems are now 
operating and carrying data in the Gbit/s range over trans-oceanic 
distance (3,000-10,000 kms). 

Notice the implications of this statement for the system power 
budget. A 10,000 km fibre link of 0.2dB/km fibre has an insertion loss 
(without amplification) of 2000 dB or a transmission of 10-200. The 
amplification required is 2000 dB implying some 100 amplifiers spaced 
by 100 km intervals each providing 20 dB gain. Notice also that any 
small departure from perfect gain equalisation across the signal band 
will lead to massive errors overall. For example, a 0.5 dB gain 
mismatch repeated across 100 amplifiers implies a 50 dB gain error or a 
signal power that is in error by a factor of 105. Such numbers highlight 
the extreme care that is required in designing such systems both in 
terms of controlling signal and gain levels very precisely and also in 
controlling the spectral bandwidth and hence noise build-up along the 
link. But it is also very important to notice that, since the signals now 
stay in the optical domain throughout the link rather than just between 
regenerators or amplifiers, the effective link length for dispersion 
calculation purposes is now the overall link length, not the amplifier 
section length. Thus, when we considered the performance of 10,000 
km links in our dispersion discussion earlier, there was a good reason 
for doing so and we see also that the link design for such systems must 
pay very close attention to the issues of source wavelength, spectral 
spread and fibre dispersion properties. 

8 Wavelength Division Multiplexing (WDM) 

One single number about the EDFA brings home the scale of the 
possibility it might offer. The gain spectrum for an EDFA is shown 
schematically below in Fig. 15. 
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Fig. 15. Schematic gain spectrum for an EDFA. 
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For comparison purposes, one should note that the entire electrical 
spectrum from DC to millimetre wave embraces about 300 GHz yet 
within each amplified fibre, there is perhaps 10-20 times that much 
available for exploitation. This has stimulated great interest and 
discussion on how it can be exploited. 

The first point to note is that with electronic circuits running into 
increasing difficulty in operating in excess of perhaps 10-20 Gbit/s, it 
seems fanciful to imagine filling this space by electronically 
multiplexing data to ever higher rates, particularly into the multi-Terabit 
range. Increasingly, the favoured route is to use multiple optical carriers 
each of which will be modulated at perhaps 10 Gbit/s. This is known as 
Wavelength Division Multiplexing (WDM). Whilst there is still debate 
on exactly how far this approach can be extended, there seems to be a 
convergence on 100 GHz (optical) as the carrier spacing for the first 
WDM and already systems with 16 carriers are carrying traffic. The 
optical spectral spreads this gives rise to are shown below in Table 5. 

No Carriers Carrier Separation Optical Spread 
100 GHz (nms) 

8 100 5.25 
16 100 11.25 
32 100 23.25 
64 100 47.25 

Table 5. Total spectral spread for different WDM systems. 

The precise choice of carrier spacing involves many factors. An 
obvious one is that any one carrier plus its modulation must not 
spectrally overlap that of an adjoining carrier and that a sufficient 
spectral window must be left between them to allow one to be filtered 
from another. But we shall see shortly that other more complex factors 
enter the design process involving the control of non-linear cross talk 
between carriers in the same fibre. 

Notice that the technology above implicitly assumes that optical 
sources and filters of high stability are available. A stability of carrier 
frequency of 1 GHz centred at a wavelength of 1500 nm implies 
frequency stability of 1:200,000 which in turn means exceptional 
control of the key components. 

9 Non-Linear Effects in Fibre 

As interest in exploiting WDM has grown, so also has the realisation 
that the design optimisation of fibre systems to suppress non-linear 
interactions will be a key factor in their success. Some simple numbers 
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illustrate the problem. Consider 50 carriers each with l m W  of power in 
a single mode fibre having a typical core area of 50 square-microns. The 
power density in the core is 100 kW/cm 2, far more than enough to melt  
fire-brick! Yet this power density could be maintained over the best part 
of  10,000 kms or 1013 wavelengths so that only a very small non- 
linearity could be expected to be case for concern. In practice, all 
materials are known to suffer from the Intensity Dependent  Refractive 
Effect  whereby we find that the refractive index is given by an 
expression of the form : 

ntota 1 = n o + n2 E 2  

Here the term nO is the normal linear refractive index and the term n2 is 
the intensity dependent  refractive index (IDRI) and is coupled with the 
optical electrical field E. The second term is small but in our situation, 
where E can be large, the result is significant. 

The IDRI arises f rom the Kerr non-linearity or third order polarisability 
in the material. This is written as : 

P i  (0)1) = EOXijkl(0)l,0)2,0)3,0)4)Ej ( 0 ) 2 ) E k  (0)3)E1 (0)4)  

where P is dipole polarisation in the material at frequency 1, the term X 
is the 3rd order polarisability tensor and the three terms in E represent 
the electric fields of up to three different driving waves. In this more 
general form, the frequencies are related by the relationship : 

0)1 = 0)2 + 0)3 + 0)4 

out of which a number of different interactions are possible : 

i. 0)1 = 0)2 + 0)3 + 0)4 or 30) 1 = 0)1 + 0)1 + 091 

This is sum frequency generation or 3rd harmonic generation if all the 
driving waves are the same frequency. This is not significant in fibres. 

ii. 0)1 = 092 - 0)3 + 0)4 

Here, if the driving waves are closely spaced as in a WDM  system, the 
new frequency 1 can coincide with or be close to them. This is known 
as Four Wave Mixing (FWM) in fibres. 

iii. 0)1 = 0)1 - 0)1 + 0)1 
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This is the classic IDRI effect in which a single driving wave produces a 
polarisation at the same frequency which shows up as a modified 
refractive index. In fibres, this effect is known as Self Phase Modulation 
(SPM) 

iv. 0)1 = 0)2 -- 0)2 + 0)1 

This is a very similar case except that two waves interact to generate a 
polarisation at the frequency of one of them proportional to the intensity 
of the other. This effect is know as Cross Phase Modulation, (CPM). 
We will now examine each of these in a little more detail. 

9.1 Self Phase Modulation (SPM) 

This effect describes the effect of the IDRI being excited by a wave that 
modulates itself. The simple IDRI expression suffices so that we can 
write : 

ntota 1 = n o + n2 E2  

which, if the electric field were constant, would simply lead to change 
in the phase length of the fibre. However,  because the wave is 
modulated, E changes with time and hence we can write : 

Sv  = - ( L n ( 2 ) / A ) A t  ~ , . . ,E  2 ,  
d t  

A frequency shift is induced in the wave proportional to the rate of 
change of  intensity. Schematically, we can represent this as shown 
below in Fig. 16. 

I ~ Pulse 
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Fig. 16. Chirp induced by IDRI on the carrier frequency of a pulse. 
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The carrier wave underlying the pulse envelope is chirped as shown. 
This change in carrier frequency during the pulse then interacts with the 
linear dispersion of the fibre to change the pulse shape. This can lead to 
a variety of effects ranging from pulse compression through exact 
cancellation of the linear dispersion (soliton propagation) to excess 
pulse spreading or pulse break up and the formation of chaotic pulse 
streams. 
The design of links to minimise this effect concentrates on two criteria • 

- minimising the power level in the fibre (subject to Signal/Noise ratio 
considerations) 

- maintaining low overall dispersion in the link as well as low dis- 
persion along the link to minimise the effect the induced chirp has on 
the pulse shape. 

9.2 C r o s s  P h a s e  M o d u l a t i o n  

Here the requisite expression for the refractive index in the fibre is 
given by • 

N E2 ) ]  
ntota 1 = n O + n 2 t2(( .Om) + 2 Y_, (CO n 

n#m 

where there are N carriers and we focus on their effect on carrier m. The 
expression includes the term of the SPM but also the new CPM terms 
via the summation. Now, in addition to SPM, the carrier is phase 
modulated and hence chirped by each of the other carriers present. 
Noting that N-1 might be large and there is a factor of 2 present in the 
CPM term, we might reasonably deduce this effect is of more concern, 
to the tune of 2(N-l). In practice this is true although there is a simple 
way of reducing CPM. By designing the link so that it has HIGH 
DISPERSION, the carriers involved slide past each other over short 
distances compared to the distance required for the chirp to change a 
given pulse shape. In that case, following Any one point on our carrier 
m and its data stream, any other pulse stream is sliding past and 
respectively chirping that section of carrier up and down again as it 
passes, leaving the original largely unchanged. 

Evidently to design this properly requires proper modelling of the 
non-linear interaction which, specifically, involves solving the Non- 
Linear Schr6dinger equation for the full set of coupled waves. In 
general, this can only be done numerically. 
However, our discussion has highlighted an apparent non-sense in that 
we seek a link specification that offers simultaneously both high and 
low dispersion. This apparent impossibility can be achieved in practice 
once careful attention is given to the relevant interaction lengths 
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involved. For example, during the 1/e distance during which the power 
decays in the fibre, one might ensure that high dispersion operates so 
that carriers slide past each other in terms of a few bit intervals to cancel 
the CPM effect whereas on the distances associated with the power 
restoration, one might aim to achieve low dispersion. Using special 
fibres this is possible. Two such link designs are shown below. 

In the first, standard fibre having a zero of dispersion at 1300 nm is 
used at 1550 nm and hence shows a high dispersion of order 20 
ps/(nm.km). However, before each amplifier is inserted, a length of 
fibre having a higher dispersion of the opposite sign is inserted, 
typically say of -100 ps/(nm.km). Such fibres are known as Dispersion 
Compensating fibres (DCF). The resultant dispersion map is shown 
below (Fig. 17) and implies that during propagation, pulses will stretch 
out and then recompress as they traverse each amplifier section. 
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Fig. 17. Dispersion compensation using different fibre designs. 

But more importantly, during this process, adjacent carriers will be 
racing past each other. Noting that 100 GHz carrier separation 
corresponds to 0.75 nm, then with 20 ps/(nm.km), adjacent carriers will 
slide past each other at a rate of 15 ps/km or over a 1/e length of around 
20 km by 300 ps. or 3 bit intervals at 10 Gbit/s. 

Also shown on the plot is another fibre design known as the 
Truewave fibre in which alternative amplifier sections are constructed 
of the lengths of fibre have the same numerical dispersion (modulus) 
but of alternating sign. Typically, fibre of +/- 2ps/(nm.km) is used 
which, on a 50 km amplifier section implies as slide distance of 
0.75x2x50 = 75 ps for adjoining carriers. This is claimed to be sufficient 
by ATI" for high bit rate (10Gbit/s+ systems). Note here that alternative 
sections will see the relative sign of d/dt change as the adjoining carrier 
slides alternatively forwards and backwards past the same point on the 
observed pulse. 
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We will note also in passing that the large dispersion criterion need 
to minimise CPM also minimise Four Wave Mixing (FWM) even more 
effectively so that the same design criteria largely meet both situations 
although in detail the mechanism for suppression is quite different and 
is controlled by lack of phase-matching in the travelling wave 
interaction. 

Finally, we should note that the perfect dispersion compensation 
shown in the figure above can only occur at a single carrier wavelength 
in practice because of higher order dispersion terms. In reality, a 
dispersion compensation plot for several wavelengths look like that 
shown below in Fig. 18, further complicating the design process. 
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Fig.18. Dispersion compensation map for several wavelength channels 

9.3 Soliton Propagation 

Soliton propagation is the special case of SPM where the self induced 
chirp interacts with the linear dispersion in such a way as to exactly 
cancel the ordinary dispersion that arises from the modulation line 
width with the result that the pulse propagates without change in shape. 
This can only happen when exactly the right shape pulse is present for 
the linear dispersion value operating. When one solves the Non-Linear 
Schr6dinger Equation, one finds that the optimum pulse shape is that of 
a sech(t/x) pulse in which the peak pulse power is linked to the FWHM 
pulse width as follows : 

Ppeak = 1340 D / T 2 mW 

where" 
D is the dispersion in ps/(nm.km) 
T is the FWHM pulse width in picoseconds. 

If we insert numbers into this expression, then we find the following 
for example • 
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D = 0 . 1  
T =  10ps 
P = 1.34 mW 

However, the above numbers assume that there is no attenuation in 
the fibre. When attenuation is present, it is found that by launching 
pulses with roughly twice this power, soliton propagation still pertains. 
Such solitons are described as "Average Solitons". A further condition 
for this to work is that the amplifiers in the system must be closely 
spaced compared to the "soliton distance" which is given by : 

o r  

Zperiod = 0.42 T2/D kms 

Zperiod = 562.8/Ppeak 

Another characteristics of solitons is that they attract each other 
through the same non-linear effect. In general, to prevent soliton pulses 
coalescing, they must be spaced by 7-10 times their pulse width. Thus, 
for 10 Gbit/s data streams, pulse of only 10-15 ps duration are required. 
Summarising the above we see that as the bit rate increases, the peak 
power must increase (as l/T2) and the amplifier spacing must decrease 
as T2. Together, these fundamental relations seems to impose a rather 
tough practical constraint upon the bit rate per carrier in a soliton 
system in the region of 10 Gbit/s. 

9.4 Noise in soliton systems 

Just as with a linear system, in a soliton system with amplifiers, noise 
will build up from the spontaneous emission of the amplifiers. This 
leads to a new effect known as "Gordon Haus" jitter after its discovers. 
The effect of the growing noise signal interacting with the soliton pulses 
is similar to that of the attraction of two pulses for each other. The 
randomly varying noise power pulls the soliton and introduces a random 
jitter in its time position within the pulse stream. In time, this can lead 
to break up of the data stream and the distances over which this is 
shown to occur are typical of those for undersea transoceanic systems. 
However, there is a very clever fix for this problem known as the 
sliding filter. 

We have already made clear that in an amplified system, optical 
matched filters are required, matched to the signal spectrum, to suppress 
noise everywhere except in the signal channel where nothing can be 
done about it. However, in the soliton system, one can do much better. 
By misaligning successive filters by a small amount, typically by an 
average amount of 10 MHz/km, the signal spectrum associated with the 
soliton pulse is distorted but regenerated by the non-linear interaction to 
follow the filter spectrum whereas the noise spectrum, in the absence of 
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Fig. 19. Schematic of sliding filter spectra on a long link. 

the non-linear dragging, cannot follow and is blocked. Note that on a 
10,000km system, this slide rate corresponds to a total slide of 1000 
GHz so that for linear signals, the system is completely non-transparent 
from end to end yet for the non-linearly dragged soliton, it offers data 
transparency. The sliding filter concept is illustrated above in 
Fig. 19. 

9.5 Power stabilisation in Soliton Systems 

The non-linear interaction also offers another intriguing possibility. As 
we have commented already, in long amplified systems power 
stabilisation is important but in soliton systems, it takes on an additional 
meaning because of the constraints of the soliton pulse. However, if we 
look back to the formula for the peak power of the soliton, we recall 
that : 

Ppeak = 1340 D / T  2 mW 

so that the pulse width and peak power are intimately linked. Assume 
then a long transmission system with filters after each amplifier 
matched to the desired signal spectrum (linked with the value of T). 
Assume further that the gain is too large. We can now envisage the 
following sequence of events : 
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- gain too large 
- pulse peak power too large 
- pulse shortens or compresses to make T smaller 
- pulse spectrum broadens as T shortens 
- spectral width increases with respect to filter window 
- power lost in filter increases 
- peak power decreases 

Evidently the possibility exists of a passive power stabilisation by 
exploiting the soliton effect and this also has been demonstrated. To 
date, soliton propagation using sliding filter noise reduction has been 
demonstrated in the laboratory over distances of order 1Mkm at a data 
rate equivalent to about 10Gbit/s by allowing pulses to make multiple 
rotations round a long fibre loop with amplifiers etc. No soliton system 
appears to be in use as yet since linear WDM systems have so far 
proved capable of meeting the need. 

10 Stimulated Brillouin Scattering (SBS) 

A separate non-linear scattering effect involves the scattering of light 
from longitudinal acoustic waves in the fibre. This is seen as backward 
scattering shifted in frequency to longer wavelength by about 10-12 
GHz. The scattering line width is about 20 MHz and the threshold for 
the onset of stimulated scattering is given by : 

gBLe •VB) 
Here the subscripts s and B refer to the line widths of the source and the 
Brillouin scattering, Ae is the effective area of the fibre core, Le is the 
effective length of interaction (typically 15-20kin) and gB is the 
Brillouin gain cross section and takes the value of about 4 10 -9 
cm/Watt. 

Experimental studies using Dispersion Shifted Fibre Aand a very 
narrow spectral line width source at a wavelength in the region of 1500 
nm showed the following results (Fig. 20) 

We see that at low input powers, the transmission is linear and the 
output power rises linearly with input power. However, as the threshold 
for SBS is reached, the output power stabilises and further increases in 
input power are simply reflected back to the source. This threshold 
occurs in the region of 4 mW. 



451 

10 

-10 

-20 

_30 ¸ 

-5 

dBm Backscattered 
power ( - 6 5 % ~ ~  ' ' ~  
c o n v e r s i o n S ' -  

Onset of SBS - . . . ~ . . . .  -- " 

4% Fresnel 
reflection 

I I I I 

0 5 10 15 

Input  p o w e r  - d B m  

Fig. 20. Impact of Stimulated Brillouin Scattering on the transmitted power 
in a fibre as a function of launch power 

Returning to the formula for the threshold power, we see that the value 
depends upon the ratio of  the source line width to the Brillouin line 
width (20MHz) so that using a source with a natural line width of 
200 MHz could be expected to increase the threshold to 40mW. In 
practice, most sources are broader than 20 MHz And this allows launch 
powers of  perhaps 10-20 mW to be used. Special measures can also be 
taken to artificially broaden the source spectrum or otherwise suppress 
SBS such as to phase modulate the source carrier. 

11 Stimulated Raman Scattering 

This is a similar form of  scattering but from transverse phonon 
vibrations in the glass and at very much higher frequencies. The gain 
cross section as a function of  frequency shift is shown approximately 
below in Fig. 21. 

It is immediately obvious that scattering from any carrier within the 
EDFA will scatter power throughout the window and/or produce gain at 
every other longer wavelength within the window. The result is that 
carriers become coupled and the potential exists for another form of 
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Fig.21. Stimulated Raman Gain Cross section versus frequency shift from 
the exciting carrier. 

cross talk between data streams on different carriers in a WDM 
spectrum. 

The equations describing the power coupling between two waves are 
given below : 

dP1 (X2) ~1 P1P2_alP1 
dz =--~1 2Aef f 

de2_ '}/ P1P2_a2P2 
dz 2 Aeff 

where wave 1 is the higher frequency, shorter wavelength one. The 
gain coefficient y is taken from the diagram above for the appropriate 
carrier separation while the alpha refer to the attenuation at each carrier 
frequency. The result of this is that pattern dependent cross talk occurs 
since the effect is only present when power is present in both waves 
(e.g. 1 pulses simultaneously on both carrier 1 & 2). This is shown 
schematically below in Fig. 22. 

As with the CPM effect, a partial solution is to invoke high local 
dispersion so that pulses slide past each other. However, now we are 
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Fig. 22. Schematic representation of the effect of SRS crosstalk on a two 
carrier data stream. 

concerned with a power transfer directly rather than a phase modulation 
that leads pulse distortion, so that this does nothing for the mean power 
transfer but it does tend to average out the pattern dependence of the 
transfer. Thus a power tilt occurs, with the waves at longer wavelength 
gaining power at the expense of those at shorter wavelengths and this 
can be corrected in principle by adjustment of the EDFA effective gain 
spectra. What cannot be corrected is the residual fluctuation form the 
randomness of the data patterns, which leads to a mean additional noise 
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Fig. 23. Probable limits set by SRS crosstalk on long-haul amplified fibre 
systems. 
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fluctuation on all the carriers. There appears to be no way to avoid this 
at present and it is thought to set an ultimate limit to the transport 
capacity of a non-soliton system. This limit is shown above in 
Fig. 23. 

Note that for the Transoceanic system operating over 3000-I0000 km 
range it points to a limiting data rate in the region of  30-300 Gbit/s per 
fibre range. However,  we may assume that the jury is still out on 
whether this is or is not a fundamental limit. 

LECTURE III - Photonic Switching and All-Optical 
Networks 

12 Background to switching 

The simplest interpretations of the term switching centre around one or 
other of two operations. The first is used to describe one or other of the 
set of  Boolean logical processes used in implementing digital logic e.g. 
Fig. 24 

B A O R B  

Fig.24. Switching in the Boolean logical sense. 

Such basic operations can be cascaded in clocked digital processors to 
route data. For example, by combining a clocked routing signal at one 
port with the signal at the other of one AND and one NAND (NotAND) 
gates, a continuous series routing ONEs will send the signal in one 

7 
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> 

v 

Exchange Bypass 

Fig.25. Analogue switching. 
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direction and continuous serious of ZEROs will send it the other, The 
same operation can be done in analogue switching using the devices 
shown below in Fig. 25. 

Notice a crucial difference in the operation of two approaches. In the 
logical processor, it is fundamentally assumed that the data is in digital 
form and will be clocked at a precisely determined clock rate through 
the switch. The control (routing) data is indistinguishable from the 
message data, both being binary digital data streams and the route in the 
digital version can change on a bit by bit basis if required. In the case of 
the analogue switch, the control signal is completely in the correct 
position before any message data starts to flow. 

This may seem pedantic, but it has a fundamental impact on how 
optics can be used in communications systems which have normally 
been designed to be switched using digital electronic logic and are thus 
of the former type. Whilst both technologies exist in optics, it is really 
only the latter that is competitive in any way yet it requires message 
data to contain time gaps suitably placed to allow switch resetting. 

Note that real switches are not normally concerned with a single 
input port to be connected to one of two output ports as shown above 
but with many input ports to be connected to many outputs. Thus the 
switches above should be seen a building blocks to be assembled into 
much more complex arrays before they can perform a useful function. 

13 Multiplexing 

A further key issue to understand before one discuss switching is the 
nature of the multiplexing used. Fibres offer such large capacity that it 
is very rare for a single source-destination pair to be served exclusively 
by a single fibre with the result that many different tributary streams are 
normally multiplexed onto the single fibre in order to fill it. At a 
switching node, the tributary streams must be separated and regrouped 
for onward transmission towards their differing destinations. The 
method whereby they are grouped is of critical importance. 

13.1 Time Division Multiplexing (TDM) 

This is the normal format used in telecommunications for telephony 
traffic. The discrete telephone conversations each generate 8000 8-bit 
samples per second. The transmission system capacity is split into 8000 
frames per second, each of 125 microseconds duration, and one 8-bit 
byte from each source conversation is placed in a preassigned position 
in each successive frame. Thus byte slot 23 is always the same 
conversation for the duration of the conversation. To switch such data at 
a node at the circuit (or conversation) level, it is necessary to break out 
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the individual bytes, re-route them, time shift them and re-assemble 
them into the outgoing frame from the node. In a 10 Gbit/s system, one 
byte lasts 0.8 nanoseconds and within a 125 microsecond frame there 
would be 156000 separate bytes, each to be routed differently. 
Electronically, this is done by breaking the data flow down to many 
parallel more modest data-rate flows that can be handled in digital 
electronics. In optics, no really comparable operation exists, besides 
which handling a concentrated control flow for 156000 instructions 
every 125 microseconds would be challenging! 

13.2 Time Division Multiple Access (TDMA) 

Here multiple sources and destinations time share a single fibre 
highway but they do it by taking turns to monopolise its full capacity for 
more extended periods. Thus a single source might dump a 1 Gbyte file 
in a single operation before relinquishing the fibre to another user. 

13.3 Packet Data 

Packet Data is the format commonly used by computers iover the 
Internet as well as the physical letter-post! A bundle of message data is 
parcelled into a serial stream, a destination address fixed to its front and 
a marker to signal its end fixed to its tail. The resulting "packet" is then 
"posted" into the electronic network. At each node, the desired 
destination must be read, the packet placed into a buffer memory, the 
routing onward worked out, a suitable empty slot found to accomodate 
it and at just the right moment, the packet removed from buffer memory 
and posted onwards again. This format is clearly designed to exploit 
digital electronic logic. Sadly, as a result, it hits at all the greatest 
weaknesses of optics which is not noted for the excellence of its buffer 
memory or complex logic processing. 

13.4 Asynchronous Transfer Mode (ATM) 

ATM is a much favoured development now being widely deployed in 
telecommunications networks. It offers packet like transmission for both 
voice and data and mainly differs from earlier packet formats in having 
a shorter and fixed packet length (48 bytes of message + 5 bytes of 
header) and using preassigned pathways to minimise the node 
processing problems. The system receives advance warning that a user 
will be wishing to transmit ATM cells to a specific destination and 
allocates a short code for that complete route for the duration of that 
user's requirement. The header then only needs to carry that short code 
to identify its destination and the node processor only needs a relatively 
short look-up table to identify what to do with a given cell. 
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13.5 Frequency Division Multiplexing (FDM) 

Used extensively in microwave and radio communications, different 
messages are modulated onto different frequency sub-carriers which in 
turn are then modulated onto a main carrier which might be optical. 
This has been used in some optical systems but again seems to imply 
full electrical demultiplexing before any form of regrouping can be 
attempted. Thus it offers little attraction for optical implementation. 

13.6 Wavelength Division Multiplexing (WDM) 

This is the closest equivalent in the optical domain to the use of 
different carriers in the radio spectrum. Each optical carrier is separately 
modulated with a high data rate signal (1-10 Gbit/s). At the node, 
complete carriers with their data intact are separated spectrally and re- 
routed. This is therefore switching only very large intact blocks of 
multiplexed data with no attempt to perform a finer grained operation. 
At present, it seems likely that this is one of the few forms of optical 
switching that will be used in real networks. 

13.7 Space switching 

Here all the signal(s) on a single bearer (fibre) are reconnected by a 
space switch to another bearer which carries only the single group of 
signals. However, with an NxN space switch, N input fibres can be 
connected in N! different ways to N output fibres using this approach. It 
requires no knowledge of the multiplexing adopted in any fibre but it 
does require that no transmission takes place while the connections are 
being established. This typer of switching is used for protection 
switching in telecommunications networks to redirect data from a 
broken fibre to an intact one. 

14 Switch control and timing. 

Factors frequently overlooked in discussions of optical switching are 
those of control and timing, both of which immensely complicate the 
problems of building real switches. In a complex network, one must not 
only identify a block of data but associate with it the correct desired 
destination, the correct route to get there and establish that route at the 
right point in time to allow the data to reach it. The difficulty of doing 
this escalates dramatically as one attempts to switch small blocks of 
TDM or Packet/ATM data at optical line rates. This is a major reason 
why the routing of complete WDM carriers or simple space switching 
between fibres look increasingly likely to be the first widely deployed 
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optical switching technologies since the routing for such large blocks of 
data typically changes only slowly. In fact, such switching is done 
primarily for network configuration or protection purposes, thus 
bringing appropriate capacity on stream prior to largely predictable 
increases in traffic demand or to reroute large blocks of data following 
some equipment failure. Such applications fully exploit the optical 
capability to handle very large traffic flows and whilst side-stepping its 
extreme difficulty in carrying out very fast complex logical operations. 

15 Switching Matrices and Blocking 

We commented above that complex switches are constructed using 
arrays of simpler devices. A good example is the cross-bar switch 
shown schematically below as a two dimensional array of elements 
connecting 4 inputs to 4 outputs and with one of the analogue type 
switches above at each I/O line intersection (see Fig. 26) 

Inputs 

Outputs 

Fig.26. Schematic of a cross-bar switching array. 

Such elements in optics are normally made using guided wave 
exchange-bypass four port switches and hence in reality look more like 
Fig. 27. 
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Fig. 27. Schematic layout of guided-wave crossbar switch. 
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Notice that in such a switch, only a single exchange-bypass needs to be 
set in order to make any desired input-output connection, assuming of 
course that neither line is already in use. In the off state, all need 
switches in the above matrix to be in the exchange state and making a 
single connection involves resetting one to bypass. However, an 
obvious problem with such switches is that they scale in complexity as 
the square of the number of ports and for large switches, this rapidly 
becomes a problem. Moreover, of the N 2 switches present, at best when 
all input ports are excited, only N are actually set, implying very 
inefficient use of resource (e.g. at 1/N level). 

Fig.28. 4×4 Benes network. 

As a result, many switch matrices are of different form. An example, the 
Benes network is shown below in 4x4 format (Fig. 28). It uses only 6 
switches to perform the same function as 16 switches in the 4×4 cross 
bar. Note also that for such a switch, there are 4! = 24 possible 
connection patterns. With 6 switches, each having 2 possible states, 
there are 26 = 64 possible combinations of switch setting so this is still 
making less than 100% use of the hardware. However, the penalty of 
such a more efficient structure is that to establish a new set of pathways, 
many existing pathways will also have to be re-routed. Such a switch is 
therefore known as re-arrangeably non-blocking. 

Some other switches are scaled down to a size where it is simply not 
possible to support all possible I/O connection patterns and these are 
known as fundamentally blocking or conditionally non-blocking, 
conditionally since subject to certain conditions (such as only half the 
inputs being in use) they are not blocking. 

We that rather long pre-amble completed, let us now consider some 
optics again. 

16. Digital Optical Logic 

16.1 Free space "wiring". 

During the 1980s and early 1990s, there was much discussion about 
Digital Optical Computing and. following from that Digital Optical 
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Switching often also known as Photonic Switching. The thesis generally 
adopted was that, by using simple imaging optics, a very large number 
of parallel data (ray) paths can be established from one plane to another 
so that if the planes were composed of two dimensional arrays of 
optically activated logic gates, powerful computing structures might 
become possible (see Fig. 29 for an example). 

Computation of course requires the bringing together of data from 
different sources, making logical comparisons and then dispersing into 
yet different groupings. Thus a simple imaging interconnect as shown 
above does not suffice and much work has been done developing more 
complex interconnection patterns to that end. One very simple example 
is shown below in the form of a Perfect Shuffle Network (Fig. 30) 

2 d i m e n s i o n a l  arrays  o f  optical ly act ivated logic e lements .  

Fig. 29. A simple parallel "free space imaging" wiring hamess. 
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Fig.30. A free-space imaging implementation of a "Perfect Shuffle Network'. 

One sees a linear array, magnified by a factor of two and, by means of 
the beam splitting prism and suitable aligned mirrors, with two such 
images overlaid on each other so that the upper half of one image 
exactly interlaces the lower half of the other. The interconnection 
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pattern so obtained is known as a Perfect Shuffle since it corresponds to 
the reordering obtained when a pack of cards is plit in two and two 
halves are then shuffled or interleaved. (e.g. 1,2,3,4 becomes 1,3,2,4). It 
is one example of a connection pattern widely used in switching 
matrices and paralle processors that can be copied using imaging optics 
which are suitable for very regular array interconnections used in large 
array processors whilst being totally unsuited to the more typical 
connections found on the average printed circuit board. 

16.2 SEEDs 

A wide variety of different devices has been proposed for use in the 
optically triggered logic planes. One that has attrracted more interest 
than most is the Multiple Quantum Well (MQW) Self Electro-Optic 
Device (SEED). 
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Fig.31. The structure of one particular member of the SEED family of 
devices. 

It consists of a PIN diode, usually grown in the GaAs-A1GaAs system, 
in which the I region is formed from an MQW stack of layers. One such 
device structure is shown above in Fig. 31. 

In such a structure under zero reverse bias, a strong exciton 
absorption is observed at the band edge of the material. As the reverse 
bias is increased, the exciton absorption moves to longer wavelengths, 
broadens and becomes less intense as shown schematically below in 
Fig. 32. This provides the basis for a bistable logic device. Consider 
such a device connected as shown below (Fig. 33). 
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Fig.32. Absorption spectra for SEED devices versus bias voltage. 
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Fig. 33. The SEED device in an operating circuit. 

When no light falls on the device, no current flows and the full bias 
voltage is dropped across the SEED and the absorption is low. As light 
is shone on the device, some current flows which in turn decreases the 
bias across the device. This increases the absorption which increases 
still further the photo-current.  Under  the right, conditions,  posit ive 
feedback sets in and the device switches. A schematic curve showing 
the output power versus the input power is shown below in Fig. 34. 

Outpu t  
P o w e r  

Input  P o w e r  

Fig. 34. Schematic input/output diagrame for a SEED device in transmission 
showing a bistable "logic" region. 
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Turning this device into a workable digital logic element is more 
challenging when large arrays are required. The bistability threshold for 
the above device clearly depends upon the optical power level of the 
input beam and this is always difficult to control precisely. 

Dual rail Photon / 
inputs " " ' . ~  SEED 
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Fig. 35. The Symmetric SEED (S-SEED) 

The contrast ratio of the ON and OFF states is poor and is susceptible to 
change with temperature etc. A clever solution to some of these 
problems was to introduce the Symmetric SEED (S-SEED) shown 
above (Fig. 35). 

Two of the basic devices are connected in series between ground and 
bias voltage rail and they are now illuminated by two separate optical 
beams. The key factor here is that in such a device, switching is not 
initiated by the absolute level of the input power but by the ratio of the 
input powers. In an optical system, this is much more susceptible to 
control. 

Using the S-SEED approach, large arrays (1000's of devices) have 
been constructed and complete prototype logical processors have been 
built around them using parallel imaging optical "wiring". However, it 
must be said that the technology appears to have no prospect of being 
used in anger for a number of rather fundamental reasons. 

Self evidently, these devices are electronic in their operation albeit 
they are triggered optically. For light to be imaged successfully into 
such devices, their size must be large or comparable to the optical 
wavelength. This means that they are large by modern electronic 
standards, have large capacitance and need large amounts of charge to 
switch their state. As a result, they are power hungry compared modern 
digital electronic equivalent devices. 

Another problem concerns the imaging optical wiring. Whilst it can 
be formed using special optical componentry, it is very cumbersome 
compared to the equivalent PCB approaches and hardly compatible one 
with the other. This is a problem since, as we noted earlier, in clocked 
digital switches it is axiomatic that data is accurately time-aligned (by 
bit-interval) and that the approriate routing data enters in perfect 
synchonism also. In the parallel optical switch, it is assumed that data 
flows will be in byte parallel rather than serial form so that serial 
incoming data from a transmission system must be demultiplexed, 
converted from serial to parallel format, marshalled in time and 
launched into the optical parallel processor. The electronics necessary to 
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do this is proibably as complex as the switch matrix itself, so the case 
for introducung an alaien technology fades still further. Finally, one 
must note that the selling point that the optics is massively-parallel and 
gains competitive power as a result never really stood up to critical 
examination since electronic systems were already adopting parallelism 
as way on increasing data flow. The overall conclusion seems to be that 
parallel digital optical logic systems have failed in their attempt to 
compete with complex electonic digital logic. 

Remnants of this programme can still be found in studies of optical 
interconnects using free-space "wiring" for chip-to-chip and backplane 
application although whether anything will finally emerge that is really 
competive remains to be seen. In all these cases, the theoretical 
advantages of "simple" parallel imaging optical interconnections prove 
extremely difficult to realise in real electronic system environments 
since they are not usually assembled on massive, very stable air-bearing 
optical tables ! 

17 Optical Planar Space Switches 

In 1969, Stewart Miller published a paper outlining ideas for a new 
Integrated Optics technology, so named by analogy to Integrated 
Electronics. The proposed the use of single mode waveguide structures 
formed in or on the surface of planar substrates by epitaxy or diffusion 
to construct optical analogues of many of the components already 
existing at microwave frequencies. 

One of the components that has been studied extensisvely is the 
waveguide directional coupler shown schematically below (Fig. 36) 

WaveguidesSingle'm°de ~ .~_~,P~trol electrodes 
diffused into • ~- " 

surace 
I 

Lithium Niobate ~ "  NWaveguide coupling 
crystal substrate region. 

Fig.36. Schematic layout of a planar electro-optic directional coupler 
electrically operated switch. 

Power entering one waveguide couples by means of the evanescent field 
overlap to the other guide once the region is entered where the two 
guides are close together. The degree of coupling is sensitively 
dependent upon the propagation constants for the modes in the two 
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guides which in turn can be changed using the electro-optic effect (in 
the Lithium Niobate substrate) and a (DC) electric field applied using 
the surface electrodes. Thus by changing the voltage across the 
electrodes, the optical guided-wave power can be switched from one 
output port to another. Attaching such devices with fibre tails leads to 
simple fibre-compatible exchange-bypass switches. However, note that 
because the devices are planar they lack the perfect circular symmetry 
of the fibre and as a result, the two light polarisations are treated 
separately and tend to switch at different voltages. Making devices that 
are polarisation independent is difficult but possible. 

It is the nature of these devices that they tend to be long (order ram.) 
and very narrow (order 10 lxm). Building an array switch, say the cross 
bar shown earlier, thus leads to very long thin structures and the 
complexity that can be packaged onto a single chip tends to be limited 
by the number that fitted into the substrate length. As a result, only 
small switch arrays have been made, typically 8x8 port. 

Similar size switching arrays can be constructed in semiconductor 
materials using similar principles or by using semiconductor laser 
amplifier arrays as ON-OFF switches with passive power splitters. The 
latter is particularly attractive since it allows power restoration as well 
as just ON-OFF switching but, as with all gain processes, carries a noise 
penalty. In this format, a simple 2x2 exchange-bypass switch now takes 
the form shown below(Fig. 37). 
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Fig.37. Directional coupler/splitter formed using semiconductor laser 
amplifiers. 
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Establishing the exchange connection pattern requires activation of 
Amplifiers 2 and 3 to connect Ports A to D and B to C. But notice that 
this structure also has an additional capability, namely that activating 
amplifiers 1 & 2 connects Port A to both outputs generating a 
"broadcast" operation which is useful in many system situations, such 
as CATV. 

Notice also that with two 3dB splitters in every pathway, the 
min imum insertion loss for this structure is 6 dB which must be 
compensated for by a gain of 6 dB in each amplifier. Clearly, larger 
networks can be built using this element as a building block so that the 
4x4 Benes Network shown earlier using 24 amplifiers. 

8x16 lines = 
128 inputs 

Location of two 392 ampfifier arrays 

1 t 
"1 1 

16 

88 (4x7) stages 

', 
49 (8x8) stages 88 (4x7) stages 

Fig. 38. Schematic layout of 128x128 guided wave optical switch. 

Large space switches have been built using a variety of different 
approaches. For example, a group at NEC described a 128x128 space 
switch with the layout shown above (Fig. 38). The diagram both 
illustrates what has been proven possible but also the incredible 
complexity that emerges as such structures grow. The component count 
for the above switch is reavealing (Table 6) 
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Active component count 
176 of  the 4x7 switch matrix modules 
49 of  the 8x8 switch matrix modules  
Each 4x7 stages contains 28 directional couplers 
Each 8x8 stage contains 64 directional couplers 

Total directional coupler count = 8064 
Number of laser amplifiers = 784 

Passive (single mode) connection count 
Total number  of guided wave connects = 4288 

Optical insertion loss without amplifiers = 48dB 

Table 6. Component count for the 128x128 switch of Fig. 38. 

The problems of electrically wiring and controlling such a switching 
array give one pause for thought. 8064 directional couplers, plus 784 
implying a minimum of nearly 9000 wires assuming that common 
ground connections can be used. 

18 Optical Time Switches 

Since most telecommunication switching today is done in the time 
domain, there has been a strong interest in implementing time switching 
in the optical domain. However, the digital time multiplex and 
associated time switching technology was developed around the 
characteristics of clocked digital electronic logic circuits and buffer 
memories and optics has no competitive equivalent technology at 
present. 

However, much interest has centred on the use of fibre delay lines as 
analogue memories and one finds a variety of different approaches in 
demonstrators. For example, a delay line can be used to allow time for 
electronics to read and process a header signal on a packet prior to 
setting a switch position (Fig. 39) 

The time delay is fixed and it is assumed in such a system that 
packets arrive with sufficiently large gaps between them to allow the 
switch state to be changed. 
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Fig. 39. Use of fibre delay line to deliver "thinking time" for electronic 
control. 

The more complex situation of time slot interchange switching in which 
the order of bytes in a time sequenced signal has to be changed involves 
a more complex approach, such as that shown below (Fig. 40). In this 
sub-system, a number of new elements have been added. Access to the 
fibre delay lines is via switched exchange-bypass couplers making it 
possible for a packet to be injected into the ring-fibre and then to 
recirculate for several times. This is aided by the addition of a EDFA to 
maintain the power level in the ring. The Semiconductor Optical 
Amplifiers (SOAs) act as ON-OFF switches. The overall switch 
operation is then as follows. 

Delay Line 
with delay t 

Power Power 
• combiner 

Switch 

t = byte,  cell or  packet length 

Switched semiconductor 
"amplifiers" used to select 

required data. 

Fig. 40. A schematic optical time switch using recirculating loop delay lines. 
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The incoming stream of fixed length packets or bytes with guard bands 
between them is assumed to have been pre-identifed as to destination so 
the control is already in receipt of the requisite route information. 

The data is broadcast to all the SOAs, one of which is activated to 
pass the data forward to the ring switch which is set to the exchan~6 
state. The data enters the ring after which the ring-switch reverts to 
bypass state, allowing the data to recirculate. After the desired delay, 
the ring switch is again switched to exchange, dropping the data out of 
the ring and passing to the output power splitter and hence to the output 
port. Using this approach a data stream containing N sub-unit messages 
can be resequenced using N delay lines. However, as N becomes large, 
the splitter losses also grow as do the timing and control problems and 
the system becomes increasingly inefficient. Note that in the worst case, 
to reorder an N message long sequence a delay of up 2N units can be 
required. Thus if there is an error in the analogue time delay of dt per 
revolution, this will be magnified to N.dt ,  implying sharply tightening 
tolerances as the switch size grows. 

Thus far the analogue switching we have described largely sets out to 
re-engineer in the optical domain what was originally designed for use 
in the electronic domain. The problems of this approach are simply that 
it pits optics in head-on confrontation with digital electronics and 
generally it emerges looking severally bruisedf Where the analogue 
approach offers a distinct advantage over the electronic equivalent is 
that, once a pathway is established, it offers virtually infinite bandwidth 
but still have taken a relatively long time to become established. Optics 
thus lends itself to applications where the whole broadband data-stream 
needs to be shifted intact and struggles where the data stream needs to 
be demultiplexed into a vast number of tributary channels. Switching of 
channels within WDM streams seems to be emerging as a prime 
application for this. 

19 Wavelength Switching And Networks 

In wavelength switching, there are two new operations that are required 
to perform wavelength routing in the optical domain. The first is that of 
wavelength multiplexing and demultiplexing to allow the individual 
wavelength channels within a fibre to be separated to individual 
processes and then to be recombined together again. During the 
reordering process, space switching and amplification will also be 
required using building blocks we have already discussed. Finally, the 
efficiency of wavelength channel reuse in a network can often be 
enhanced if a capability exists to wavelength shift or to change the 
carrier wavelength whilst leaving the data on it intact. 

For calibration purposes, note that the emerging standard for 
wavelength carrier spacing is 100 GHz with some interest in 
interleaving a second set of carriers spaced by 50 GHz for local 



470 

distribution purposes only. These correspond to line spacings of 0.85 
and 0.375 nm respectively. The filter response should ideally be flat 
topped across the signal spectrum with a sharp cut-off at the band edge 
to prevent adjacent carrier breakthrough. Since data rates of up to 10 
Gbit/s per carrier are considered, this implies very tight control of both 
filter shape, even with 100GHz carder spacings (Fig. 41). 

Carrier 
Filter frequency 

r so- f301o ,  : 

-100 0 +100 

GHz (optical carrier) 

Fig. 41. Optical filter specification! 

Note also that the centre frequency for such a filter probably needs to be 
controlled to better than 10 GHz or 1:20,000. When multiple filters are 
cascaded in an extended network, these design problems become 
especially acute since the channel is an entirely analogue one and the 
distortions of each filter add to those of earlier ones. For a filter to be 
sensitive to a change of 1:20,000 in wavelength or frequency, it must 
normally extend for a distance of order 20,000 wavelengths, which at 
1500 nm wavelength corresponds to some 30 mm but it must also holds 
it dimensions stable to a fraction of wavelength over that distance. 
Herein lies the design problems of working with such devices, stability 

Lens Grating 
Fibre Grating 
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array 

which simplifies to • 

Fig. 42. Grating filter "spectrometer" constructed using bulk optical 
components. 



471 

and precision. Hence at present we find relatively simple extended 
WDM networks being built. However, some new classes of closed 
networks of the LAN type are beginning to emerge with interesting 
properties as a result of major component advances. 

Filters fall into several categories. Many designs use bulk grating 
coupled with free-space optics to assemble what is in reality a small 
grating spectrometer with fibres at its entrance and outlet slits. 
Sometimes, these designs are integrated into a planar one dimensional 
guided wave structure as shown above (Fig. 42), which in turn 
integrates into a planar geometry as (Fig. 43) 
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Fig. 43. The planar guided wave equivalent component. 

Such devices offer limited scope opportunities for filter shaping but 
have been shown to provide impressive resolution and an ability to 
handle large numbers of wavelength channels. 

A quite different approach relies upon writing refractive-index 
gratings by holography into single mode fibres using UV light. These 
gratings then need to extend over distance of order centimetres and to 
be written with great precision to generate the required filter shape. The 
underlying grating spacing corresponds to a half wavelength in the fibre 
so that the small amount of power back scattered from each undulation 
add in phase with that from the previous undulation. Such a pair of 
fibres is shown below in a coupler structure designed to provide ADD- 
DROP multiplexing functionality for a single wavelength channel 
(Fig. 44). 
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Fig. 44. Planar or fibre based impressed grating filter. 

The properties of the structure are that the channel that is reflected by 
the grating wavelength emerges from Port 2 while the remainder of the 
channels emerge unscathed from Port 4. An attractive feature of such 
devices is that they can be cascaded to form a complete WDM 
(Fig. 45). 

~,1 " ~ - - - - ~  

)~3 --~ 

Fig. 45 Multichannel WDM assembled using sub-components of the Fig. 44 
type. 

However, it is immediately obvious that such an assembly will involve 
large lengths of fibre or planar waveguide all of which must be 
accurately temperature stabilised and vibration isolated if a stable 
precision device is to be obtained. To date devices with pass bands 
ranging from a few tenths of nanometres to a few nanometres have been 
reported, placing them well into the range of system interest. 

In the quest for greater stability, it is natural to have explored the 
reproduction of such devices in planar geometry and the use of silica 
waveguides deposited on planar silicon substrates has proved to be a 
powerful combination for the purpose. Such an approach allows one to 
exploit all the planar lithographic technology developed for silicon 
circuits but incurs the additional complication that, having moved from 
circular to planar geometry, special designs of waveguide are now 
required to ensure that the two polarisation (TM & TE) behave in the 
same manner. 

In planar implementations, a widely used design feature is that of the 
Array Waveguide Multiplexer shown schematically below (Fig. 46). 
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Fig. 46. Planar lxN array-waveguide multiplexer schematic. 

This elegant device relies upon two "free space" 1-D guide regions. 
Staring from the input, power enters the free space region from input 
guide and fans out across all the output guides. Each guide is exactly a 
length dL longer than it neighbour, starting from the smallest radius of 
curvature. When the separate wavelets emerge from the other end of the 
curved guides and enter the second flee-space region, the relative 
phasing of the wavelets is such that they only add constructively at one 
of the output guides whilst an adjoining wavelength channels only adds 
at the adjoining output guide. In this manner, the separate input 
wavelength channels entering the device emerge from separate guides at 
the output. Evidently the device is reversible and can be used as a 
multiplexer as well as demultiplexer. 

Many applications would benefit from the availability of a tuneable 
high resolution filter. Here the most widely used design is the bulk 
Fabry-Perot etalon with piezo-electrically driven mirror spacer although 
many designs make use of fibre components, some going as far as 
physically stretching the fibre to allow the whole structure to be fibre 
based. 

Given tunable filters, it then become possible to consider assembling 
a more complex wavelength channel switch of the type shown 
schematically below (Fig. 47). The node accepts wavelength 
multiplexed inputs from each of three input fibres, with each carrying 
three wavelength channels. These are fanned out by power splitting to 
four 4x4 space switches after passing through tuneable channel 
selecting filters and power level controls (variable attenuators). Each 
filter can select just one wavelength channel. Since the output fibres 
carry the same four wavelength channels as each of the input fibres, the 
connection possibilities are complex to describe. If a wavelength 
channel A is selected from input fibre One and routed via switch One to 
output fibre Two, then this has three immediate effects. 
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Local l n p u t s ~  Local Outputs 

Fig. 47. A multi-fibre-port wavelength switch using an assembly of different 
building blocks. 

- the connection from Input Fibre 1 to Switch 1 is occupied and cannot 
be used by any other channel from that input fibre. 

- the output connection from Switch 1 to Output Fibre 2 is also used and 
cannot be reused by any other channel. 

- the wavelength channel A in output fibre 2 is also used and cannot be 
used by any other signal. 

So if it should transpire that Wavelength Channel A in input fibre 2 also 
wishes to be routed to output fibre 2, this is not possible unless the 
wavelength is shifted. In this switch design, this could be done by 
routing this signal to the local output port of Switch 2, detecting the 
signal and using a tuneable source tuned to a different carrier 
wavelength to re-transmit the data into the Local Input Port of the space 
switch. In this manner, a few wavelengths can be shifted albeit at the 
expense of blocking the scope for terminating data channels at the node. 
An obvious refinement on this design is then to interpose a wavelength 
shifter after every tuneable filter. 

Wavelength shifting devices most commonly used follow the 
example above of linking a detection stage, perhaps with some electrical 
reshaping of the pulse stream, to an electronic driver and tuneable 
source. Monolithically integrated versions of this device offering similar 
functionality have also been made but combining the requirements of 
rapid tuning, tight spectral control, precision of central channel 
wavelength and data integrity remains a very tough problem. 
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20 Further developments in WDM Networks 

The existence of the Array Waveguide Multiplexed (AWG) concept has 
led to a family of new and intriguing devices. For example, linking a 
AWG to an array of laser amplifiers with rear facet mirrors allows one 
to build an array laser source whose wavelengths are set by the 
properties of  the AWG and hence corresponds those of the system it 
was designed for (Fig. 48). 
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Fig. 48. Use of a I×N AWG to generate an array WDM laser transmitter. 

The output mirror provides the output reflection for all the N lasers 
whilst the AWG then splits their resonator paths to N separate gain 
chips shown on the left. At the receiver end of a system, a similar 
approach can be followed using an array of detector chips, each with its 
own front-end amplifier (Fig. 49). 
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Fig. 49. Use of a lxN AWG to generate an array wavelength receiver 
module. 
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Linking such components through a single fibre leads a simple N 
channel WDM transmission system. However, by introducing another 
components between them, a much more powerful network emerges. 
Building on the lxN AWG concept, one can design and build NxN 
AWG as shown schematically below (Fig. 50). 
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Fig. 50. A schematic diagram of a NxN port AWG multiplexer. 

By careful design, the wavelength-channel-number connection matrix 
can take the following form (Table 7): 

Input 1 2 3 4 
Output 

1 1 2 3 4  
2 4 1 2 3 
3 3 4 1 2 
4 2 3 4 1  

Table 7. Connection matrix for 4x4 AWG. Numbers in the body signify 
wavelength channel making the connection. 

The implication of this matrix is that Channel One is connected to 
Channel 2 by wavelength 2 but that Input 2 is connected to Channel 3 
by the same wavelength. The "barrel-roll" nature of the connection 
matrix arises from making the AWG so that it operates in a high order 
(of order N). Using this device, it is now possible in principle to form a 
fully connected NxN network using only N wavelengths (Fig. 51). 
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Fig. 51. Fully connected NxN network using AWG central multiplexer and 
array sources and receivers. 

Since AWG Multiplexers (AWGM) of this type have been in sizes of 
32x32 and even bigger, the potential for such networks is awesome. 
Assuming only 1Gbit/s per carrier were used, the above network using a 
32x32 AWG would transport approximately 1 Tbit/s. 

However, some problems do intervene in the use of AWGMs in this 
manner. One tough problem concerns the effect of interchannel 
interference. If two sources are operating simultaneously on the same 
wavelength channel, although they are using separate laser sources and 
are thus not phase coherent with each other, the fact that the optical 
spectrum has been so heavily filled with carriers and modulation 
implies that there virtually a certainty that power from one source will 
scatter and interfere with power from another similar wavelength 
channel source to generate modulation products within the signal 
bandwidth, showing up as cross channel interference. Since this is 
optically coherent interference, one must add optical field amplitudes, 
not powers. The result is that to hold the unwanted interference level 
below -20 dB, the scattered power must be held to below --40 dB 
implying very tough constraints on the allowable scatter levels within 
the device. And if all N sources are required to operate simultaneously, 
this will be even worse. As a result, networks of this type are usually 
operated in time-shared mode, with perhaps one transmitter array 
addressing all other terminals via its directed channels to be followed by 
the next transmitter array, cycling in turn. 

There are then numerous other network configurations that exploit 
WDM technology in different ways, rings, stars with passive central 
splitters, using tuneable transmitters, receivers or both etc. Each has 
different traffic carrying and control characteristics and each is subject 
to endless variations through choice of componentry, cost-benefit trade- 
off, application etc. 
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21 Other technologies 

This overview of optical communications has necessarily been partial 
and incomplete. Apart from selecting, often on a largely arbitrary basis, 
one device over another to illustrate a point, there are whole sectors that 
have been missed. A few that should be noted are given below. 

21.1 The III-V lasers and detectors 

These make all the systems possible and draw upon an immense amount 
of materials and device design & fabrication technology involved. 
However, we have chosen to use the available time and space to 
concentrate on the limitations imposed by the transmission medium and 
the impact this has of device specification. 

21.2 The ultra-fast pulse area. 

Optics has the ability to generate femtosecond or few-picosecond pulses 
and thus offers the possibility of exploiting fibre bandwidth via very 
high bit rate rather than multiple carrier WDM and work is in progress 
at rates in excess of 100 Gbit/s per carrier. Such data stream are usually 
formed from a series of tributary data stream that are bit interleaved so 
that simple bit multiplexing and demultiplexing can be done at the 
optical line rate leaving tributary streams at data rates that can just be 
handled electronically. However, such very high bit rates place very 
tough requirements on the linear dispersion properties of the fibre and 
may thus only be appropriate over short distances. 

21.3 Free space optical systems 

These are already widely used as low-technology communication links 
from lap-tops to printers etc. There may be much greater opportunity to 
use such technology to generate a truly wireless office that is 
broadband-connected etc. 

21.4 Other modulation formats. 

The use of binary ON-OFF modulation almost universally in optical 
communications systems has meant that other modulation formats have 
been relatively little explored. As the device sophistication increases 
and WDM systems approach ever closer to coherent systems, perhaps 
other options will emerge with, say, superior non-linear interference 
suppression characteristics. 
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21.5 Coherence 

The coherence properties of the optical carriers are not being exploiting 
at present. Thus one might question the extent to which squeezed states 
are compatible with all other constraints under which systems operate. 

22 Overall Conclusions 

22.1. Single mode optical fibres are firmly established for all high 
performance applications. But being circularly symmetric, they actually 
support two degenerate polarisation modes and hence do NOT maintain 
polarisation state. This generates problems when interfacing to planar 
integrated-optics. 

22.2. The wavelength of 1st preference over the last decade has 
been 1300 nm since it offered low attenuation and dispersion in an 
easily fabricated fibre. However, for extreme performance, the emphasis 
has now shifted firmly to 1550 nm operation to take advantage of the 
even lower attenuation and the EDFA. Dispersion problems can be 
fixed by using special fibre designs optimised specifically for this 
wavelength (e.g. DSF, DCF, Truewave etc). 

22.3. Graded-index multimode fibres are still used where cost is a 
prime consideration rather than performance, probably at 1300 nm 
wavelength and typically at bit rates of 100 Mbit/s or less over distances 
of less than 10km. An excellent example is FDDI. 

22.4. The choice of silica as the primary fibre material seems to be 
firmly established with negligible prospect of any major change in the 
foreseeable future. Lower attenuations at even longer wavelength are 
possible in principle in non-oxide glass materials but the other 
properties of these materials (toxicity, ruggedness, strength, durability, 
resistance to corrosion, purity etc) all militate heavily against them. 
Thus for high performance optical communications, the combination of 
the EDFA and 1550 nm silica transmission fibres seems established 
beyond question. 

22.5. The push for ever greater bit rate over longer distance, up to 
10,000 km transoceanic, has brought non-linear effects to the fore in 
advanced system design. The Kerr non-linearity gives rise to Intensity 
Dependent Refractive Index, solitons, self & cross phase modulation 
and four wave mixing. These effects are particularly important in WDM 
systems. Brillouin scattering can power-limit that power transmitted 
forward in the fibre whilst Raman Scattering gives rise to cross talk 
effects that may ultimately set the physical limit for WDM systems. 
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22.6. The fact that the fibre spectral bandwidth is hugely greater 
than that of electronic systems has added great impetus to the 
development of multi-carrier transmission WDM systems. Data rates of 
order 10Gbit/s per fibre are being deployed and although higher rates 
are possible, linear dispersion effects soon become a limiting factor on 
really long haul systems. 

22.7. The development of the EDFA has effectively removed the 
distance limit for unrepeatered fibre systems, so that Trans-oceanic over 
10,000 km is now possible. It also offer the attractive property of an 
almost transparent data pipe so that data formats can in principle be 
changed although (optical) noise filters in the system may prevent this. 

22.8. The use of digital optical logic for time switching or 
processing data seems to be a completely dead subject since it has failed 
to demonstrate any ability to compete on level terms with electronic 
logic. The parallel-free-space imaging optical technique is still being 
considered for use as an interconnect technology but formidable 
engineering problems have to be solved in a context where price is a 
very critical factor if it is to find application. 

22.9. Viable devices exist to assemble small space switches, 
perhaps up to 16x16 size, coupled with a large number of other devices 
which together allow the demonstration of different types of switch 
including packet and ATM, time slot interchange, as well as simple 
space switches. Despite offering huge bandwidth throughput, such 
devices are relatively slow to reconfigure and thus can only be operated 
in a circuit switched mode, resetting when no data flow is present, and 
this normally require data to be presented in non-standard formats. If 
this requires electronic processing between the transmission system 
terminal and the switch matrix, as it often will, the task of selling the 
optical switch is greatly increased. 

22,10. A variety of switches are being use for protection or 
configuration switching where the task is to switch all the data on a 
given (fibre) bearer to another fibre following a break in the fibre or to 
allow the network operator to bring additional capacity on-stream on a 
give route. 

22.11. A growing family of wavelength routing devices, multi-plexers, 
demultiplexers, wavelength shifters etc is becoming available and 
simple but very high capacity wavelength routed transport networks are 
now starting to be taken very seriously. 
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23 References for General & Further Reading 

Note - a reference in the text to [2.4] implies Chapter 4 of Volume II. 
These volumes contain very extensive references to the research 
literature for the reader who requires further detail. 

1. "Optical Fibre Telecommunications I", S E Miller & A G 
Chynoweth, Academic Press 1979 

2. "Optical Fibre Telecommunications II", S E Miller & I P Kaminow 
Academic Press 1988 

3. "Optical Fibre Telecommunications IliA", I P Kaminow and T 
Koch, Academic Press 1997 

4. "Optical Fibre Telecommunications IIIB", I P Kaminow and T 
Koch, Academic Press 1997 



Thoughts on Quantum Computation 

David P. DiVincenzo 

IBM Research Division, T. J. Watson Research Center, PO Box 218, Yorktown 
Heights, NY 10598 USA 

Abs t rac t .  If the improvement of computation continues at anything like the pace 
that it has set over the last fifty years, within a few decades we will have devices 
of atomic dimensions. Quantum computing, in which bits, in their atomic embodi- 
ment, can exist and be manipulated in a coherent superposition of computational 
states, is one possible method for fundamentally improving computing once the 
atomic scale is reached. I illustrated some of the design principles of quantum gate 
constructions, using the two-bit adder as a simple example. Some details of the 
Shor prime factoring algorithm are discussed. 

1 O u t l o o k  

A large number of technologies--from steam locomotives to light bulbs--have 
experienced a period of exponential improvement, followed by a leveling off 
of performance and price, followed by an eclipsing by a better technology. 
Computers are unusual in that  they have remained in this "initial" period 
of exponential improvement for a remarkably long time, now exceeding fifty 
years by some estimates. Through a remarkably creative succession of many 
sub-technologies which have arisen and been in turn eclipsed, the overall 
numbers--processor speed, processor memory, disk capacity, modem r a t e - -  
have persisted in their steady and prodigious growth. These sub-technologies 
in computer switches began as mechanical relays, and continued through 
vacuum tubes, discrete transistors, integrated circuits with bipolar junction 
transistors, and now finally ICs with MOSFET transistors ("CMOS" is the 
current acronym). For mass storage they began with paper tapes and became 
magnetic drums, magnetic cores, bubbles, opticM disks, and now spinning 
magnetic disks. The sub-sub-technologies, like the techniques of reading out 
magnetic data  on a disk file, constitute a large part of the raison d'etre for 
much of solid-state physics research today. 

But the development of computers is approaching a crisis, or, you might 
say, this development is preparing to go the way of all the steam locomotives 
and light bulbs of the past. Tha t  is, the end of the period of exponential 
improvement can now be seen. This end is inevitable because of basic physics: 
with a continuation of the present rate of exponential improvement,  the logic 
gates in a computer logic or memory chip, and the bits on the surface of a 
magnetic disk, will reach atomic size in the next 15 years or so.f10] 

So, what will eclipse computers? Nothing, think many of the seers at IBM 
and elsewhere. They will become ubiquitous and they will, for the large part, 
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become invisible, hiding in everything from your toaster to your scuba mask. 
I will, however, address myself to a different question in these lectures: can 
the improvement of computers be put on a new track, can some new principle 
of improvement besides that  of miniaturization be discovered? 

2 Q u a n t u m  C o m p u t e r s  

The answer to this question may be yes, through the agency of quantum com- 
puters. At least, we have found, as I discuss in these lectures, that  quantum 
mechanics sufficiently changes the rules of computing (which have been, up 
until now, based on what is possible in classical physics) that  some compu- 
tations which appear impossible on any computer based on ordinary digital 
computer become possible on a quantum computer. (For this part of the 
lecture, the reader should consult [3] for a more detailed review.) 

The main change of rules that  is produced by quantum mechanics for 
computer science is one involving data representation. In the world of boolean 
logic, a computer state is completely specified by a bit string 01100010101... 
of length n, for a computer containing n bits. If these bits are quantum 
mechanical, something different happens. This kind of bit is embodied in a 
quantum two level system, like the ground and excited states of an atom, 
vertical and horizontal polarization of a single photon, or the spin-up and 
spin-down states of a single electron. The most general quantum state of one 
such bit with energy levels 10) and I1) can be written as the SchrSdinger 
wavefunction I~P) = al0) + fill), where a and ~ are two complex amplitudes 
whose squares sum to one. The most general state of n quantum bits (qubits) 
is 

~11000...000> + ~21000...001) + c~31000...010)+ ... + a2,1111...111>. (1) 

Please note the enormous amount of information required to specify the state 
of these n bits. An exponentially large number of complex coefficients oi 
are needed. This indicates that  the information carrying capacity of an n 
quantum-bit  systems is in some sense exponentially greater than that  of a 
string specifying the state of n classical bits. 

Only, I must emphasize, in some sense. For we know that  by the rules 
of quantum measurement, if a quantum bit (a quantum two-level system) is 
measured, the outcome is still just a 0 or a 1. Holevo has shown that  no more 
information can be extracted from the quantum bit by any measurement 
scheme whatsoever. So, most of the exponentially great amount of informa- 
tion required to specify the above state is inaccessible on read-out. Indeed, 
most states of the fully general form above are rather useless for data  storage. 
If the superposition contains a large fraction of the possible states, then each 
bit will, upon measurement, give a completely random answer. 

Nevertheless, quantum states are quite useful for computation. The para- 
digm for a useful quantum computation is (and indeed must be) the following: 
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Start in a simple initial state (all 0). Perform computational operations (to be 
discussed in a moment) which take the system into a complex superposition 
like Eq. (1) in the intermediate steps of computation. In the latter stages of 
computation, exploit quantum interference to make most of the elements in 
this superposition vanish (by a destructive interference) so that only a few 
members of the superposition are left. Then do a measurement, which now 
has a chance of giving some valuable (non-random) information. 

3 Q u a n t u m  G a t e s  

This specification sounds rather abstract, hopefully a few of the examples I 
will mention will illustrate why this prescription is a good thing to do. First, 
though, I want to specify what I mean by a "computational operation" in 
quantum computation. It turns out that a good starting point is a type of 
computational operation which is studied in ordinary digital logic known as 
a reversible boolean logic gate. A reversible gate is one in which the output 
Boolean state is a unique function of the Boolean input state. For example, 
the inverter is a one-bit reversible gate, since if the output is 1 the input must 
have been a 0 and vice versa. A crucial reversible gate for quantum logic is the 
two-bit gate known as the controlled-NOT or reversible XOR gate, which has 
the input-output mapping 00 ---* 00, 01 ---* 01, 10 ---* 11, 11 ---* 10. The action 
of this gate may be explained by saying that the second bit (the "target") is 
inverted if the first bit (the "control") is a 1, and otherwise not. 

There is a simple prescription for turning any reversible gate into a quan- 
tum logic gate, that is, a physically realizable operation on a quantum state 
like Eq. (1). It is that, if the quantum state is a pure bit state, one containing a 
single term in the expansion of Eq. (1), then the output is also a single term 
with a bit state specified by the boolean gate. So, for the controlled-NOT 
quantum gate, if the input quantum state is ]11), the output state is [10). 
(If there are more bits in the state, their boolean value is untouched by the 
gate.) Then the mapping of the general input state is completely specified by 
the superposition principle; thus, if the input of the quantum controlled-NOT 
is [00) + 111) (unnormalized), then the output is [00) + [10). 

We can make this sound more like traditional quantum mechanics by 
restating this specification as a time-development operator, from which we 
can ultimately work our way back to a Hamiltonian which any physicist would 
be comfortable with. The time-development operator is unitary (meaning 
that orthogonal quantum states are mapped to orthogonal quantum states); 
for the controlled NOT it can be written in a couple of alternative ways. In 
operator notation it is U = [00)(001 + [01)(01[ + [10)(10[ + [ l l ) ( l l l ;  it should 
be easy for the reader to confirm that this maps general two-bit quantum 
states exactly as I have specified above. If the wavefunction coefficients of 
Eq. (1) are specified as a column vector, then the action of U can also be 
specified as a matrix: 
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O1 

Finally, we know that the time development operator is given by integrating 
the Schrodinger equation forward for a specified length of time (say from 
time 0 to time t), and this provides a connection to descriptions of quantum 
mechanics which are most familiar to most physicists. The formal solution of 
this equation, relating U to the Hamiltonian H(t), is 

// U = T e iHt 'd t  '. (3) 

I will not remind the readers about the technicalities of "time ordering" 
(T), which can be found in any good quantum textbook. The important 
point is that given some desired U acting on two quantum bits, it turns out 
to be relatively easy to invert this equation and find a simple H(t) which will 
accomplish the desired logic operation. I should point out that I say H(t) be- 
cause it is quite important that the Hamiltonian be explicitly time dependent, 
for the simple reason that each quantum logic gate will be preceeded and fol- 
lowed by different ones involving different bits; so, a succession of turnings on 
and off of different contributions to the Hamiltonian should be envisioned to 
take the system through the desired discrete series of operations. Fortunately, 
such explicit time dependence is easily accomplished by, for example, turning 
on and off appropriate electric and magnetic fields, which can be done with 
lasers, voltage gates, current coils, etc. In fact, the controlled-NOT corre- 
sponds to rather well known spectroscopic manipulations of pairs of spins in 
double resonance experiments. 

An apparently trivial observation is that all the same reasoning can be 
applied to operations acting on one bit at a time. This may appear trivial 
since there is only one single-bit boolean gate, the inverter, which is not by 
itself very interesting. The quantum operation of an inverter is represented 
by the two-dimensional unitary operator 

It is at the level of such one-bit operations that it is most convenient to 
introduce the next, crucial generalization of quantum logic gate. This follows 
from the simple observation that the operator Eq. (4) is not the most general 
unitary operation on one qubit. Spectroscopy suggests several generalizations 
of Eq. (4); almost as easy to get as the inverter is 

~ cos0sin0'~ 
U =  \ _ s i n O c o s O j .  (5) 

o r  
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U=( cos0 isin0) 
isin0 cos0 " (6) 

Which involve different types of "tipping pulses" with tipping angle 0. While 
these operations have no meaning in boolean logic (although you could per- 
haps assign them an interpretation in fuzzy logic), they are very meaningful 
and very useful in quantum computation. They are important because they, 
unlike the quantum XOR gate, can (and do) change the number of terms in 
the quantum state. In fact they can increase or decrease the number of terms 
in the superposition by up to a factor of two. Thus, these gate are needed 
if the computational state is to progress from a one-term state (all 0s) to a 
complex multi-term superposition and back to one or a few final states. Note 
that an exponentially large number of terms in the superposition by only 
linearly many applications of such one bit gates in conjunction with XOR 
gates. So, these generalized one bit gates are very powerful, we have in fact 
proved that such one-bit gates plus just the one fixed two-bit gate (the XOR) 
are enough to implement any quantum time evolution, that is, any quantum 
computation. 

4 T w o - b i t  a d d e r  

Fig. 1 shows an example of a simple gate construction for a useful boolean 
arithmetic logic operation. It is a circuit for adding 1 modulo 4 to a two-bit 
number. Thus, the (reversible) transformation to be accomplished is 00 --+ 01, 
01 ~ 10, 10 ~ 11, and 11 ~ 00. This circuit is not the most efficient one for 
accomplishing the desired task (exercise for the reader: implement the speci- 
fied function with just XOR gate and one one-bit gate), but it is the simplest 
example of a scalable construction introduced by Chuang[2] for implementing 
"add n modulo 2 'n' '  to an m-bit quantum register. His construction is very 
space efficient (no work bits) and reasonably gate efficient asymptotically for 
large m (the number of gates grows linearly with m, although with a fairly 
high constant prefactor). As the figure indicates, it first performs a discrete 
quantum Fourier transform (FT in the figure, to be described a bit more 
below), then a set of one-bit phase-change gates (sl and s2), and finally the 
inverse of the Fourier transform (IFT). 

To describe this gate array in more detail: The four two-bit gates are the 
XOR gates, with the control bit being the lower and the target bit being the 
upper. The h gates are the so-called Hadamard gates, they implement the 
unitary transformation 

1(11 h = _ ( 7 )  

hi and h2 indicate that the h gates act on the two different bits; as 4 × 4 
matrices, these gates assume different kinds of block-diagonal structures: 
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FT 
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Fig. 1. Quantum gate array for the boolean logic function, "add 1 modulo 4." The 
numbers along the bottom indicate the increase and subsequent decrease of the 
number of terms in the superposition state during the course of the computation. 

( ~  0 1 0 
1 1 0 1 

hi 
0-I 0 
1 0 - 1  

i 1 0 0 1 -1  0 0 
h 2 - - ~  0 1 1 

0 1 - 1  

(8) 

Gates gl, g2, and g3, needed to implement the FT, are (in 2 x 2 form): 

0 ) 
g3 = el,~4 , g2 = 0 e _ i r / s  , gl = g~. (9) 

The two phase-shift gates are 

When computing the net unitary transformation produced by this gate array, 
it is helpful to recall that what reads from left to right in time order must be 
written in the reverse order in the rules of ordinary matrix arithmetic: 

Utot = hi  x g~ x U x o R  × .. .gl × h i .  (Ii) 

The figure notes the feature that superposition states are created and 
then destroyed again in this process. Starting with any one-term classical 
state (e.g., 100)), the first h gate takes the state to a two-term superposition, 
as indicated by the numbers over the bold vertical lines in the figure. The 
g gates are diagonal in the computational basis, so they do not change the 
number of terms in the superposition. Note that the gl and g2 gates could 
not increase the number of terms on the superposition in any case, as they 
all are acting on the top bit along with the first h gate, and neither these not 
the XOR gate can change the state of the lower qubit. Finally, however, the 
h2 gate doubles the number of terms in the superposition again, to four. Of 
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course, four is the maximum number of terms possible, and this number is 
not changed by the s gates, the next h2 gate, however, immediately begins 
the undoing of the superposition, reducing the number of terms from four 
to two (the other two are annihilated by destructive interference). Likewise 
the final h gate drops the number of terms to one, as required by the overall 
requirement that  this gate array perform a classical boolean function. 

5 S h o r ' s  p r i m e  f a c t o r i z a t i o n  q u a n t u m  a l g o r i t h m  

This growth and reshrinkage of the number of terms in the superposition of 
computational states is one thing that is going on, on a much larger scale, 
in the quantum algorithm of Peter Shor for prime factorization. I shall not 
give a complete review of Shor's ingenious algorithm, which is the subject of 
a complete review article in Reviews of Modern Physics[9]. I will highlight a 
few features which should further illuminate some of the points made above. 

The Shor algorithm for factoring the number N relies on some properties 
of the (classical boolean) function 

f (x)  = a~(mod g ) .  (12) 

Here a and x are positive integers, a is chosen to be relatively prime to N, 
that  is, to have no prime factors in common with N (such a number can be 
selected by performing a rapid classical calculation). The desired property is 
the period of this function, that  is, the integer r for which f ( x  + r) = f(x).  r 
can also be identified as the first positive integer for which f ( r )  = l (mod N).  
This relatively simple equation for the period results because the function 
satisfies a one-term recurrence, i.e., f (x  + 1) = af(x)(mod N), so that  once 
the function again becomes 1 it begins to repeat itself (note that  f (0)  = 1). 

Here is how this period is related to prime factors. We can rewrite the 
equation 

a ~ = l (mod N) (13) 

a s  

a r - l = k N ,  (14) 

where k is some other integer (this last equation is not modulo N).  If r is 
even, the left-hand side of this equation can be factored into two integers: 

(a r/2 + 1)(a ~/2 - 1) = kN. (15) 

Unless the two factors on the left hand side are k and N (an unlikely oc- 
currence), then at least one of these two numbers has a greatest common 
factor with N which is smaller than N; this common factor can be found by 
a rapid classical computation (Euclid's algorithm). While this factor is not 
necessarily prime, if it is not the procedure can be repeated until a prime 
factor is obtained. 
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So, factoring becomes easy if the period r is given. But computing r 
classically is very difficult; there is no much faster algorithm than examining 
each f(z) one at a time until the period is found. But quantum computat ion 
does provide an efficient method of computing this classical constant r by 
the intermediate use of quantum superpositions. 

As in the above toy example, the state of the computer begins in a classical 
state (one-term superposition), in fact the specific one for which all the bits 
are 0: 

= 1000...). (16) 
I will use the shorthand for this state of just indicating the integer value of 
the bit string, so that  10) = 10000), 113) = Ii101), etc. To be more explicit, 
this means that,  if we are using the state of four spins to encode numbers, 
then the number 13 is encoded by spin 1 being up, spin 2 begin up, spin 3 
being down, and spin 4 being up. 

The first step of Shor's algorithm is very simple: perform the h gate above 
on the first ml bits (we refer to these bits as the "first register"), leaving the 
remaining m2 bits untouched (the "second register"). I will not be too specific 
about the values of ml and ms that  are needed, see [9] for details; suffice it 
to say that  ml and ms are simple polynomial functions of the size of the 
number N to be factored. Using the shorthand above and specifying the 
state of the first ml bits by one integer and the state of the final m2 bits by 
a second integer, the state after performing the ml h gates is (leaving out 
normalizations) 

2 " I  - I  

= Ix, 0) = 10, 0) + I1, 0) + 12, 0) + 13, 0) + 14, 0) + 15, 0) + ... (17) 

Note that  the h gates have done their job very well. Each of them has achieved 
its best by the criterion of generating terms in the superposition; each has 
doubled the number of terms, so that  the wavefunction has exponentially 
many terms as a function of the number ml of h gates. 

The next step of the Shot algorithm involves the function f (x) .  The high- 
level instruction is, "evaluate the function on the x given by the first register; 
place the result in the second register." This is a classical operation, so it does 
not further change the number of terms in the superposition. Constructing 
a gate array of XORs and one-bit gates to execute this function is mainly 
a job for conventional computer science; it can be done by recognizing that 
a compiler can code a high-level function like f(x) into a set of primitive 
boolean logic operations like NOT and AND; then one simply needs to know 
that  there is a simple, well known[l, 5] procedure for implementing each AND 
with a small number of XORs and quantum one-bit gates. 

This function evaluation sets the wavefunction up so that  meaningful 
destructive interference can take place. To illustrate how this next step goes, 
we pick some particular parameters for f (x) :  N = 15, a = 7 (a = 2 is equally 
good and is left as an exercise for the reader). The new state is then: 
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2 ml  --1 

x = 0  

Ix, f(x)) = 10, 1) ÷ I1, 7} + 12, 4) + 13, 13) + 14, 1) + 15, 7) + ... (18) 

It is clear from inspection of this state that  the period r = 4, and plugging 
this into 15 reveals the factors of 15 immediately. In actual quantum compu- 
tation, of course, we are not allowed to know this period "by inspection"; we 
must be able to do a measurement to determine it. Here is one way (but just 
a possible way) that  the Shot algorithm can be completed. First, measure 
the second register. In the example above, the only possible outcomes of this 
measurement are 1, 7, 4, and 13 (that is, the binary expansion of these num- 
bers as obtained by spin-up/spin-down measurements). Suppose the outcome 
is 7. Then the residual quantum state after this measurement is 

~'3 = 11,7) + 15,7)+ 19,7) + 113, 7}-t-... (19) 

It is evident that  we must do a further measurement to determine the peri- 
odicity in the first register. One way we can describe this is to say that  we 
do a measurement in a kind of "plane wave" basis 

e ,  = (20) 

Measuring in this basis would give ¢, which would give the period. This is 
a bit awkward, as this "plane wave" basis is actually a very awkward multi- 
spin basis set. Fortunately, there is a further quantum computation which 
will change basis from these plane waves to the standard spin-up/spin-down 
basis in which measurements can be naturally made. This change of basis 
is accomplished by the quantum Fast Fourier Transform referred to above. I 
will not go into this here, as it is quite adequately described in the standard 
references[9, 3]; suffice it to say that  a very simple array of XORs and one-bit 
gates will do the job. 

6 P h y s i c a l  I m p l e m e n t a t i o n  o f  Q u a n t u m  C o m p u t a t i o n  

All of what I have had to say at my Cargese lectures on the physical imple- 
mentation of quantum computation I have written about elsewhere, so I will 
just close with a brief bibliography. I have presented a succinct list of five re- 
quirements for experimentalists to at tempt to satisfy quantum computation, 
in whatever area of quantum mechanical research that  they might be; the 
reader will find them described extensively in [4, 6]. A particular discussion 
of the problems associated with quantum decoherence may be found in [8]; 
methods for error correction to combat decoherence have been discovered, see 
[7] for my work and [12] for a review of the already vast amount of theoretical 
work that  has been done in this area. We have proposed an architecture for 
quantum computation using the spin dynamics of single-electron quantum 
dots; see [11, 6] for details of this. 
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Atom-photon interaction 
bad cavity limit, 33, 314 
dressed atom model, 26 

atom field system, 28 
Rabi oscillation, 29 
time evolution, 28 

electric dipole approximation, 248 
Fermi's golden rule, 250 
Heisenberg representation, 9, 249 
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oscillator strength, 4 
quasi-resonant approximation, 2 
Rabi oscillation, 4 
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semi-classical approach, 4 
semi-classical model, 7 
strong coupling, 31 
weak coupling, 31 

Bell inequalities, 15 
Bloch Maxwell equations, 4 

Cavity QED, 26, 298 
1D atom regime, 301 
anti-bunching, 35, 301 
atom transit 307 
bad cavity limit, 33, 314 
cold atoms, 304 
critical atom number, 303 
critical photon number, 303 
non-classical state generation, 34 
Purcell effect, 301 
shot noise reduction, 307 
squeezing, 35 
strong coupling, 301 

quantum box, 347 
reflection spectrum, 201,204 

transmission spectrum, 306 
vacuum Rabi splitting, 301 
weak excitation, 300 

Carrier dynamics 
carrier-carrier scattering, 125 
dephasing, 126 
detailed balance, 120 
LO phonons scattering, 121 
quantum Boltzmann equation, 120 

Coulomb blockade 
electron injection, 316 
macroscopic junction, 314, 319 
mesoscopic junction, 320 

Dipole emission 
DBR planar cavity, 68 
free space, 254 
planar cavity, 50 
radiation pattern, 51 
single mirror, 48 
(see also spontaneous emission) 

Distributed Bragg Reflector (DBR), 59 
angular width, 67 
Brewster effect, 61 
microcavity, 130, 188 
penetration depth, 66, 189 
reflectivity, 65, 189, 190, 191 

phase, 189 
spectral width, 66 
total internal reflection, 61 
transfer-matrix method, 63 

Electromagnetic field 
plane wave expansion, 42 

Electron states 
anticommutation relations, 94 
band structure, 88 
Bloch theorem, 84 
Bloch wavefunction, 84 
Coulomb interaction, 91 
effective mass, 88 
envelope wavefunction, 92 
exciton, 91 
Fermi-Dirac distribution, 104, 119, 
120, 123 
Fermions, 94 
Hartree-Fock approximation, 110 
lattice potential, 83 
Pauli exclusion, 91 
phase-space filling, 111 
quantum confinement, 92 
quantum dots, 92 
quantum wells, 92, 93 
quantum wires, 92 
renormalized transition energy, 111 
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second quantization, 94 
tight-binding approximation, 85 
(see also exciton) 

Exciton, 91, 112 
absorption coefficient, 113 
bleaching, 140 
Bohr radius, 91 
Bose-Einstein condensation, 325 
boser, 324 
boson nature, 325 
composite boson scattering, 326 
continuum absorption, 114 
Elliott formula, 114 
in semiconductor microcavities, 

semi-classical theory, 129 
nonlinear saturation, 140 
oscillator strength, 229 
phase-space filling, 91 
quantum well 

broadening mechanism, 203, 213, 
227 
inhomogeneous broadening, 229 
reflection, transmission 198 
spectral diffusion, 227 

Rydberg energy, 91 
saturation, 138 
second quantization, 217 
Sommerfeld enhancement factor, 114 
Wannier, 113 
(see also microcavity) 

Fibers, see optical fibers 

Laser 
dielectric photonic wire lasers, 291 
linewidth, 18 
phase noise, 18 
photonic wire, 291 
pump noise, 18 
semiconductor diode, 315 

Light 
dielectric field, 9 
field momentum, 9 
photodetection, 16 
photon number, 9 
quantum description, 8 
quantum field operators, 8 
quantum measurements, 16 

Light-Emitting Diodes, 38, 314 
extraction efficiency, 39, 393 

impact of source linewidth, 402 

microcavity (MC-LED), 40, 393 

Lorentz model, 1 

Mesoscopic p-i-n junction, 313 

Microcavity 
cavity polariton (exciton-polariton), 
199 

acoustic phonon relaxation, 226 
bottleneck effect, 226 
dispersion relation, 203, 207 
linewidth, 208 
photoluminescence, 225, 233 
radiative linewidth, 209 
radiative rate, 200, 229 
reflectance, 204 
transfer-matrix method for, 206 

DBR, 129, 188 
cavity linewidth, 192 
Fabry-Perot resonator, 182, 183 
leaky modes, 193 
mode dispersion, 195 
reflection, transmission coefficient, 
218 

effective thickness, 224 
excitons in, 135 

linear susceptibility, 197 
luminescence, 144, 147 
optical response, 196 
Rabi splitting, 212 
strong coupling, 210 

Fabry-Perot 
dispersion curve, 187 

ideal planar 
extraction, 399 
modes, 395 

metallic mirrors, 184 
modes second quantization, 217 
normal mode coupling (NMC) or 
"vacuum field Rabi splitting", 
(VRS), 137,173, 200, 201,210 

saturation, 143 
photon escape rate, 224 
photonic microdisk, 335, 338, 420 
photonic wire, 335 
pillar microresonator, 335, 336 
quantum theory, 217 

Bose operators, 220 
exciton-photon interaction, 218 
Fano theory, 221 
Heisenberg equation, 221 
Kramers-Kronig relations, 223 
master equation, 224 



495 

quasi-mode approximation, 220 
silica microsphere, 335 
vs. macrocavity, 398 

Noise 
Johnson-Nyquist, 315 

Nonlinear optics 
coherence length, 368 
form birefringence, 370 
nonlinear coefficient X (2), 368 
phase matching, 368 
quasi-phase matching, 380 
second harmonic generation, 368 

Optical coupler (beam splitter) 
linear, quantum theory, 19 

Optical communications, 426 
all-optical networks, 454 
asynchronous transfer mode (ATM), 
457 
dispersion budget, 433 

erbium doped fiber amplifiers 
(EDFA), 440 

frequency-division multiplexing, 457 
photonic switching, 444 

SEED (self-electro-optic device), 
461 
switching matrices, 458 
optical time, 467 
planar switches, 464 

power budget, 433 
receiver sensitivity, 435 
time-division multiplexing (TDM), 
455 
wavelength division multiplexing 
(WDM), 441, 457 

WDM networks, 475 

Optical fibers 
attenuation, 430 
cross-phase modulation, 445 
dispersion-shifted, 436 
graded index, 417 
material dispersion, 429 
multi-mode dispersion, 428 
nonlinear effects, 442 
single mode, 427 
soliton propagation, 447 
stimulated Brillouin scattering, 450 
stimulated Raman scattering, 451 

Optical transitions, 89 
direct transitions, 89 

Parametric oscillator, 13 

Photons 
antibunching, 24, 313, 321 
correlated, 14, 231 
noise spectral density, 17 
shot noise, 17 

suppression, 315 
twin, 24 

Photon states 
coherent states, 12 
coincidence detection, 22 
density-of-states, 255 
gl2, 23 
g(2), 23, 231, 311 
Hanbury-Brown-Twiss experiment, 
310 
heralded single photon states, 313 
homodyne detection, 19 
mean values, 11 
nonclassical states, 14, 310 
number squeezed states, 314 
number states 14 
mode volume factor 256 
noise spectral density, 20 
Poissonian distribution, 12, 312 
pump noise, 314 
quantum field states, second 
quantization, 9,10, 246 
quantum fluctuations, 11 
quantum noise, 11 
quiet, 312 
squeezed states, 12 
squeezed vacuum states, 13, 14, 21 
standard quantum noise, 12, 21 
subPoissonian distribution, 13, 18, 3 
vacuum state, |0  
white noise, 21 

Photonic crystals, |50 
dielectric defect, 161 
line defect, 167, 418 
master equation, 150, 154 
microcavity, 166 
nonlinear optics, 366 
of X (2), 379 
point defect, 163 

monopole mode, 164 
reciprocal lattice, 153 
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rotational symmetries, 155 
scale invariance, 155 
spontaneous emission control, 164 
two-dimensional 

design, 407 
diffraction, 414 
losses, 415 
reflection, experiment, 413 
transmission, experiment, 413,417 
transmission, theory, 156 
two-dimensional cavity, 420 
waveguide configuration, 409 

three-dimensional, 160 
waveguide, 167 
waveguide bends, 167 

reflection, 170 
transmission, 169 

Yablonovite, 161 

Planar cavity 
guided modes, 73 

Purcell effect 272, 334 
cavity QED, 301 
in microdisks, 343 
in micropillars, 341 

Quantum computation, 482 
physical implementation, 490 

Quantum computers, 483 
quantum bits, 483 
quantum gates, 484 
Shor's algorithm, 488 
two-bit adder, 486 

Quantum cryptography, 355 

Rabi oscillation 
vacuum field Rabi splitting, see 
Microcavity, normal mode coupling 

Refractive index 
complex, 42 

Single photon generation, 352 
in quantum box microcavity, 348 
parametric down-conversion source, 
361 
quantum information, 353 

quantum cryptography, 355 
single photon interference, 353 

single molecule source, 357 
weak laser source, 356 

Semiconductors 
low-dimensional, 92 

quantum wells, 92, 198 
optical nonlinearities, 116 

Coulomb correlation effects, 116 
see also electron states, excitons, 
carrier dynamics 

optical response, 98 
Bloch equations, 107, 327 
free carriers, 102, 104 
Heisenberg equations, 117 
interband polarisation, 110 
Lindhard formula, 128 
Lorentz model, 98 
many-body hierarchy, 118 
Markov approximation, 117 
polarisation operator, 102 
quantum Boltzmann equation, 119 
screened Hartree-Fock, 128 

Spontaneous emission 
bulk dielectric medium, 274 
decay rate, 252 
dielectric cavity, 276 
dielectric photonic wire, 282 
dielectric photonic wire lasers, 291 
effect of collisions, 2 
Einstein model, 3 
free space rate, 254 
in microcavity, 332 
lossless metallic cavity, 259 
lossless metallic photonic wire, 264 
lossy metallic photonic wire, 270 
modification, 72, 243 
Purcell factor, metallic cavities, 272 
theory, 245 

Strong coupling (see microcavity, cavity 
QED) 

Transfer-matrix method, 63, 131, 174 
transfer matrices, 176 


